Cold Sprayed HEA Coatings

Microstructure and Tribological Behaviour of Cold Spray AlCoCrFeNi_{2.1} Eutectic High-Entropy Alloy

Cristian V. Cojocaru, Maniya Aghasibeig, Eric Irissou

NRC AST, Boucherville, Québec, Canada

32nd Cold Spray Club, June 2025, Gallipoli, Italy

- Advanced polymer composites
- Simulation and numerical modeling
- Powder forming
- Materials for energy technologies
- Thermal spray

- Provide expert services to Canadian industry across many sectors: e.g. automotive, aerospace, defense, medical devices, energy
- Support innovation and competitiveness

NRC-Thermal Spray Facility and Equipment

- 5 dedicated robotic spray booths
- 21 commercial spray systems (Plasma, Wire-arc, cold spray, HVOF, Flame)
- Comprehensive process diagnostics, monitoring and numerical simulation capabilities (Industry 4.0)
- Comprehensive thermal spray coating testing and characterization capabilities
- Thermal cycle laser rig and thermal cycle water vapor rig for thermal and environmental barrier coatings

NRC R&D on Cold Spray of MCrAlYs

- Feedstock: MCrAIX (M=Co, Ni and X= Y, HfSi)
- High-pressure CS: N₂ used as propelling gas
- Effect of powder granulometry, gas temperature / pressure / standoff distance (SOD) / gun traverse speed
- Very well adhered and dense cold-sprayed coatings
- Roughness: 6 to 12um, tunable with powder granulometry
- Porosity: 1 to 2.5% depending on feedstock PSD
- Bond strength: $> 70 \pm 5$ MPa

Emerging materials: High Entropy Alloys (HEA)

HEAs: solid solution alloys of five or more elements in equi- or near-equi-atomic ratios (Yeh and Cantor 2004)

More broadly: alloys containing **n** major elements, where **n** is between **5** and **13**, and the molar ratio of each element is from **5** to **35** at%.

Reasons for HEA special properties

- High mixing entropy
- Sluggish diffusion
- Lattice distortion
- Cocktail effect

Elements occurrence in HEA used as a feedstock for different TS processes

Synthesis routes reported to construct HEA feedstocks for TS:

(1) blending, (2) arc melting followed by mechanical milling, (3) mechanical alloying, and (4) gas atomization.

PEER REVIEWED

Cold Spray and Laser-Assisted Cold Spray of CrMnCoFeNi High Entropy Alloy Using Nitrogen as the Propelling Gas

Roghaych Nikbakht¹ · Cristian V. Cojocaru² · Maniya Aghasibeig² · Éric Irissou² · Taek-Soo Kim³ · Hyoung Seop Kim⁴ · Bertrand Jodoin⁴

CrMnCoFeNi: Cantor alloy

- single-phase solid solution
- powder: spherical morphology
- dendritic grain distribution
- PSD: +9.5/-45um,D50=25um
- FCC crystal structure

PEER REVIEWED

Cold Spray and Laser-Assisted Cold Spray of CrMnCoFeNi High Entropy Alloy Using Nitrogen as the Propelling Gas

Roghayeh Nikbakht1 · Cristian V. Cojocaru2 · Maniya Aghasibeig2 · Éric Irissou2 · Tack-Soo Kim3 · Hyoung Seop Kim4 · Bertrand Jodoin1

Substrates	A16061	Mild steel	Hastelloy X
R _e (µm)	4.68±0.16	3.70±0.19	2.72=0.22
Hardness (HV) at 300gf	104+1.9	204+2.36	236+0.85

Al6061

Hastalloy X

HEAS VS. MCrAIYSHEA Chemistries Explored

Alloy	Со	Ni	Cr	Al	Υ	Fe
CoNiCrAIY (wt.%)	38	32	21	8.5	0.5	-
NiCoCrAlY (wt.%)	21-22	46.5-49.5	18	11-13	0.5	-
AlCoCrFeNi (at.%)	20	20	20	20	-	20
AlCoCrFeNi (wt.%)	23.5	23	20.5	10.5-11		22
AlCoCrFeNi _{2.1} (at.%)	17	35	16	16		16
AlCoCrFeNi _{2.1} (wt.%)	19	39.5	16	8.5		17

(a) and (b) 3D and cross-section SEM of AlCoCrFeNi equiatomic powder (+15/-53um).

(c) and (d) 3D and cross-section SEM of **AICoCrFeNi**_{2.1} eutectic powder (+5/-25um).

EDX mapping of both equiatomic and eutectic HEA compositions

The AlCoCrFeNi_{2,1} System

- Al is the BCC stabilizer; addition of Al promotes the formation of NiAl BCC/B2
- Ni is the FCC stabilizer, with ~2.1 mole ratio of Ni, we achieve the eutectic composition

O order BCC

Increasing Al

content

Wang et al. (2012) Intermetallics 44–51. https://doi.org/10.1016/J.INTERMET.2012.03.005.

Fe

Ni

Co

- No signs of elemental segregation or microstructure changes
- Higher traverse speed increases micropores at particle interfaces, potentially leading to weaker bonding

SEM BSE of coating cross-section

AlCoCrFeNi_{2,1} Coatings: Phase Transformations

Cold Spray Giken PCs100

Pgas:7.5MPa; 950°C; SOD 50mm; vgun;200mm/s

- Cold spray (high strain/strain rate) favours preservation of FCC CoCrFeNi rich phase
- Peak broadening + low signal-to-noise ratio indicate high residual strain and dislocation density

Cold Spray: Preservation of Microstructure

WDS: Wavelength Dispersive Spectroscopy

- Comparison with feedstock powder indicate successful preservation of microstructure
- Thin layer of oxide at particle interfaces
- No signs of significant elemental segregation/diffusion in lamellar microstructure

AlCoCrFeNi2.1 Eutectic High Entropy Alloy Powder Features via EBSD Analysis

- Mostly spherical particles with a size range of ~5 - 30 μm.
- FCC + B2 dual-phase powders with eutectic B2 embedded in FCC matrix.
- Average volume fraction of phases:
 - ➤ FCC = 35%
 - \Rightarrow B2 = 65%
- Each powder exhibits similar orientation profile for B2 phases, whereas FCC orientation changes.

Deformation features of the cold sprayed EHEA coating via EBSD Analysis

- Closer to the particle boundary higher FCC content is observed.
- FCC inter-dendritic regions are dynamically recrystallized.
- B2 grains prevail with less deformation and not much lattice rotations
- Further, HR-TKD and TEM analysis will be performed to understand inter-particle boundary deformation mechanisms.

Deformation features of the cold sprayed EHEA coating

- To study why the lamellar eutectic structure is prone to cracking, internal eutectic structure are analyzed in the coating.
- Cracking initiates from shearing of the thin FCC and B2 lamellae.
- Network FCC and dendritic B2 have higher volume to accommodate sever plastic deformation.
- Lamellar FCC and B2 show shear at ballistic (~10⁹ s⁻¹) impact strain rates and tend fracture early.

More misorientation can be observed within the sheared region owing to severe strain localization.

Cold Spray AlCoCrFeNi_{2,1}

Wear behavior

Al₂O₃ balls (1/4 in. in diam.) under a load of 10 N for 30 min.at 100 RPM and with 1 mm track radius.

- Initial (polished) surface before wear tests shows pores; this could increase the CoF and provide higher resistance to wear.
- Tracks show debris accumulation → the cause of peaks in CoF plot.
- Dark oxide mostly (Fe,Ni)O patches in BSE limit further wear.

Points	Al (wt.%)	Co (wt.%)	Cr (wt.%)	Fe (wt.%)	Ni (wt.%)	O (wt.%)
A	10.6	13.9	18.7	23.5	19.5	13.8
В	9.1	18.2	17.2	17.3	35.9	2.4
C	18.2	10.9	9.5	15.1	21.7	24.5
D	13.1	12.5	13.5	17.7	42.9	0.3

Wear Performance: Cold Spray EHEA vs. CoNiCrAlY

Pin-on-disk wear test: Room Temperature 10N, 1mm radius, 100 RPM, 30 mins

- Cold sprayed EHEA and CoNiCrAlY coatings show similar COF
- Analysis of wear rates is necessary to draw conclusions

material	Pgas [MPa]	Tgas [°C]	SOD [mm]	Vgun [mm/s]
CoNiCrAlY fine	7.5	950	50	100
CoNiCrAlY coarse	7.5	950	50	100

1

Coefficient of friction

- Cold and plasma sprayed EHEA and CoNiCrAlY coatings show similar CoF.
- HVOF coating show slightly lower CoF.

- All EHEA coatings show transition in the CoF at different stages:
 - Effect of the presence of oxides and their distribution.
 - In a first step, agglomeration of worn oxide particles increase CoF.
 - Accumulation of oxides agglomerates lead to formation of an oxide layer → decrease CoF.

Wear rate: a comparison CS vs. HVOF vs. APS

- ☐ CS and APS coatings show stable wear rates compared with HVOF coating.
- HVOFs with lower average rate of wear could arise from the interplay of:
 - Formation of oxide layer lubrication at different time intervals
 - Accumulation of lubricating oxides leading to low wear rate
- □ CoNiCrAlYs with Yttrium doping has higher chances of forming tribo-oxide layer → Lower wear rate.

Cold Spray AlCoCrFeNi_{2,1} as Bond Coat

As-sprayed TBC

Bond Coat: Cold sprayed AlCoCrFeNi_{2.1}

Top Coat: APS 8wt% YSZ

Furnace cycling testing: sample after 125 cycles @ 1150°C in air

Summary & Future Work

- Successful deposition of dense AlCoCrFeNi_{2.1} EHEA coatings by cold spray
- Cold spray produces EHEA coatings with high hardness and minimal oxidation
- Microstructure is preserved yet phase transformation occurs due to rearrangement of the metastable BCC/B2 structure
- EHEA coatings show transition in the coefficient of friction (CoF) at different stages
- The accumulation of oxides agglomerates during wear tests lead to formation of an oxide layer and decrease CoF
- Continue wear behaviour study using both room temperature and high temperature (1000°C) setup
- Effects of annealing/high temperature testing on microstructure of deposited coatings
- Observe the development of oxide layer (i.e. thermally grown oxides in TBCs)

Thank you!

Dr. Cristian V. Cojocaru Senior Research Officer Thermal Spray / AST Tel: 450-645-4168 cristian.cojocaru@cnrc-nrc.gc.ca www.nrc-cnrc.gc.ca

