

# Evaluation of Cold-Sprayed A6061 and 99.7% Aluminum Coatings Experimental Assessment of Pre-Spray Conditions for LNG Cryogenic Pump Maintenance

June 27th 2025 Cold Spray Club 2025

John Mata, Hirotaka Fukanuma and Philipp Chmielinski Plasma Giken Co., Ltd.



# About Plasma Giken

- •Founded in 1980
- •Over 20 years experience in the development of in Thermal Spraying /Cold Spray Technology
- Delivering high-quality thermal spray technologies that enhance the performance, durability, and reliability of components across various industries
- •We want to provide benefits such as high deposition rates, minimal substrate heating, and exceptional coating quality.
- Applications in aerospace, automotive, defense, oil and gas, and many other sectors.







# Requirements: **1. Spray Material:** A6061 or pure Aluminum

- 2. Bonding Strength: Greater than30 MPa
- **3. Porosity:** Less than 5%
- 4. Surface Finish: Smooth surface preferred for effective sealing of high-pressure gas with an O-ring



#### **Specifications: PCS-1000v2 and PCS-100**

| Chamber Cas Tameraratura      | 1100°C      |  |  |
|-------------------------------|-------------|--|--|
| Chamber Gas Temperature       | 2021°F      |  |  |
| Chamber Gas Pressure          | 7.5 MPa     |  |  |
|                               | 75 Bar      |  |  |
|                               | 1087 PSI    |  |  |
| Powder Feed Rate              | 0-500 g/min |  |  |
| Time to Reach Steady<br>State | 3-5 minutes |  |  |

\* Multi Powder Feeder Operation Optional N2 & He Mixing Optional







#### 99.7% Al Chemical Composition

1.合金成分(wt%)

| 仕様       | Si    | Fe   | Cu     | Zn     | Mn     | Mg     | Ni    | その他    | Al    |
|----------|-------|------|--------|--------|--------|--------|-------|--------|-------|
| 四小番号     | <0.15 | <0.2 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | <0.02 | < 0.05 | >99.7 |
| 22K25413 | 0.023 | 0.07 | 0.001  | 0.001  | 0.001  | 0.001  | 0.003 | 0.002  | 99.89 |
|          |       |      |        |        |        |        |       |        |       |





**Particle Morphology** 



#### Specification : AM 6061



#### A6061 Powder Particle Size Distribution

- Accumulation

100

80

60

40

20

0

100

Accumulation Fraction (%)



Fraction



**Particle** Morphology

# **Bonding Strength Measurement: Experimental** Setup and Specimen Preparation Broken Line



#### **Spray Conditions**

Operating Gas: He gas Chamber Gas Temperature: 400°C Chamber Gas Pressure: 4MPa Spray Distance: 30 mm Specimen Table Rotating Speed: 60 rpm













**Ruptured Interface** 

#### PLASMA

#### **Bonding Strength**





# **Results:**

A6061  $\rightarrow$  A6061 (Group A Red):

• Very high bonding strength (around 300 MPa) (Helium as carrier gas at lower temperature and pressure).

99.7% Al  $\rightarrow$  A6061 (Group B Blue):

• Higher pressure and temperature. But lower bonding strength (under 50 MPa, but above 30MPa).



# **Deposition Efficiency and Porosity Measurement**



#### **Chamber Gas Pressure** MPa 4 5 6 7 Gas **Chamber Gas** °C 400 550 Temperature He **Spray Material** A6061 N2 **Spray Material** 99.7%Al

**Spray Conditions** 







Results



### PLASMA

# Results:

# **Deposition Efficiency vs. Gas Pressure**

- Pure Al higher deposition efficiency than A6061 at the same nitrogen pressure and temperature.
- A6061 + He 400°C achieves the highest efficiency, even at lower pressure (4 MPa).
- A6061 + N₂ shows efficiency, rising slightly with pressure (5 to 7 MPa).

## **Porosity vs. Gas Pressure**

- Pure Al + N₂ has lower porosity than A6061 under the same conditions. (~2.0% → ~1.0%).
- A6061 + N₂ shows higher porosity, but it decreases with increasing gas pressure (~3.5% → ~2.0%).
- A6061 + He 400°C has near-zero porosity (~0.1%), showing the best quality deposition.



### **Cross Section Photos**



Helium Gas 400°C 4MPa



A6061 Deposit

99.7% Al Deposit



Nitrogen Gas 550°C 7MPa

Nitrogen Gas 550°C 6MPa

Nitrogen Gas 550°C 5MPa



# Thank you ありがとうございます