

Online monitoring of cold spray for solving challenges in industrial adaptation

Cold Spray Club, Munich 2024-10-18 Jussi Larjo, Oseir Ltd.

Cold Spray Additive Manufacturing

Oseir

- Rapidly emerging technology
 - Aerospace
 - Defence
 - Automotive
 - Manufacturing

Ralls, A.M. *et al.* Materials 2023, 16, 2765 after Zou, Y. Acc. Mater. Res. 2021, 2, 1071–1081

Online monitoring: spray failures

X Oseir

- Feedstock
 - agglomeration
- Equipment wear
 - Nozzle, injector port, feed line
- Gun degradation
 - _ clogging
- System malfunction
 - Powder feeder
- Operator issues
 - Setup failures
- Affect particle propeties instantly

Continuous online sensor: HiWatch CS-Q

Sheet illumination

- Operation and features like HiWatch CS2
- Measurement area ~7x6mm²
- 1.6MP, 45fps (GigE)

Imaging geometry

- Camera view: 20° angle
- Laser sheet: 45° angle
- Parallel mounting with spray nozzle

Mounting HiWatch CS-Q

- Mount structure to Impact 5/11 spray gun
- Position adjustments +/-12,5mm
- Combined weight < 5kg
- Connects to nozzle cooling jacket
- Clearances
 - Spraying standoff > 30mm
 - Measurement zone 15-20mm from nozzle exit

Case: Plume asymmetry effect (a)

Stroke path

Bronze powder

- Single pass scans on test coupon
- Right stroke: strong flaking artifacts
- Left stroke: expected result
- Plume asymmetry suspected

Case: Plume asymmetry effect (a)

Feed rate and carrier gas flow adjustment

Case: Plume asymmetry effect (b)

* Oseir

Centerline spray gun: Venturi based feed mechanism

Gun pressure affects feed flow

Case: Powder QA

HR2 spray experiment of the same powder stock, identical process parameters

Feb 2019:

D50 25 μm

Mean velocity: 665 m/s

Plume density: 69

Mar 2019:

D50 33 µm

Mean velocity: 617 m/s

Plume density: 29

Jun 2019:

D50 64 μm

Mean velocity: 605 m/s

Plume density: 27

- Comparing SEM images of powders
 - agglomerates present after long storage
 - HR2 data suggests rapid change during one month
 - Coating yield 70% lower in latest deposition tests
- Periodic powder testing needed during long storage

Case: Feed stability

Oseir

- Repeat tests with pure Ti powder
 - Variable standoffs
 - 4 passes
 - Duration 50 s
- Anomaly in coating thickness
 - In single sample only

Case: Feed stability

CS-Q Sensor data

- Density: large peak seen in middle of first layer
- Matches the position of the ridge
- Speed almost unchanged
- Likely feeder/feed line issue

Case: Clogging prediction

X Oseir

CS-Q w/ Impact 5/11

- Long duration Inconel 635 spray
- Standoff 45mm
- Measuring dist 17mm
- Feed increased twice to incite clogging
- Clogging event at ~13:47

Case: Clogging prediction

X Oseir

- Events before clog discharge
 - 1) 20m/s speed drop
 - 2) 1mm change in position
 - 3) Sudden drop in density
- Discharge at 13:47:09
 - ~10s grace period from sensor level alert
 - alert on speed and position

Closed loop operation

Conclusions

- HiWatch CS-Q sensor
 - Mounts on spray gun for robot controlled CS operation
 - Offers continuous particle data stream during process
 - Can detect multiple issues in spray process:
 - Asymmetric powder feed
 - Powder quality changes
 - Powder feed instability
 - Nozzle clogging
 - Allows real time response to issues
 - Least time/material loss, scrap

Thank you!

Acknowledgements: TAU:

- Heli Koivuluoto
- Jarkko Lehti
- Anssi Metsähonkala Impact Innovations:
- Sebastian Pichlmeier
- Severin Noll

Available 2024

HiWatch

