

Full plume characterization for better understanding of cold spray process quality

Cold Spray Club, Gallipoli 2025-06-26 Jussi Larjo, Oseir Ltd.

HiWatch CS

ShotWatch

HiWatch HR2

Online monitoring: spray failures

- Feedstock
 - agglomeration
- Equipment wear
 - Nozzle, injector port, feed line
- Gun degradation
 - clogging
- System malfunction
 - Powder feeder
- Operator issues
 - Setup failures
- Affect particle propeties instantly

Agenda

- Why full plume characterization?
 - Full spatial coverage:
 - 3D system (models often still 1D)
 - Particle condition at impact
 - 2D: Nonuniform yield and deposit quality
 - Full time coverage:
 - Condition of spray equipment
 - Nozzle
 - Feed line
 - Powder properties
 - Transient effects
 - Rapid deterioration

HiWatch CS2

- Simple and lightweight
- Particles detected by scattering
- Results:
 - velocity
 - position
 - size estimate
- Measurement area 8x5mm²
 - Depth ~0.5mm
- ~5 μm spatial resolution in image plane

2D particle properties from single image: Particle Tracking Velocimetry (PTV)

- 3-pulse illumination with time interval *t_i*
- Particle triplet trace identified by software
 - Position and displacement vectors (**p**, **D**)
 - Velocity: $\mathbf{v} = \mathbf{D}/t_i$
 - Diameter: coarse estimate
 - Pixel resolution insuffcient
 - One-sided illumination
- Lateral and axial components relative to spray orientation
 - Single particle accuracy for p,v better than 2%

Data gallery:

Full plume analysis: uniformity

- LPCS
 - Cu powder, N2
- Ax velocity variation ~40%
- Expected deposit:
 - Higher growth rate
 - Lower yield & uniformity

- HPCS
 - Cu powder, N2
- Ax velocity variation ~ 20%
- Expected deposit:
 - Lower growth rate
 - Higher yield & uniformity

Case: Plume asymmetry

Feed rate and carrier gas flow adjustment

Original feed Adjusted feed 700 Ax velocity (m/s) 700-4x velocity (m/s) 600 600· 500 500· 400 400-300 300p_{lat} / v_{ax} p_{lat} / V_{ax} 200 200-Lat position (mm) Lat position (mm)

O Identical results for point measurement at center axis!

Case: Plume asymmetry effect (b)

Centerline spray gun: Venturi based feed

 All settings have ~750 m/s velocity at center! Low p

Axial velocity development: Shock front?

- Cu/N2 spray, VRC Gen3
 - Standoff 11mm
- Lat velocity: typical spread
- Ax velocity
 - rapid drop 800 → 700 m/s over 3mm travel
 - Re-acceleration at longer standoff
- Shock front?
 - Similar effect at substrate boundary layer?

HiWatch CS-Q

- Functionally near equivalent to CS2
- Results:
 - velocity
 - position
 - size estimate
- Gun mountable
- Offers full time coverage of particle properties
 - Tested for up to 4h
 - To be validated for 24/7 operation

HiWatch CS-Q monitoring: Stable and unstable operation during process

4 2 1

stable: 30min with ω anomalies

Feed stability

• CS-Q Sensor data

- Density: large peak seen in middle of first layer
- Matches the position of the ridge
- Speed almost unchanged
- Likely feeder/feed line issue

Feed stability

- Test coupon
 - 4 passes
 - Total duration 50 s
- Anomaly in coating thickness
 - Normal: 3mm
 - Ridge : ~4.5mm

HW HR2: backlight measurement

- Particles detected by light extinction (shadow imaging)
- Results:
 - velocity
 - position
 - diameter
- Measurement area 8x5mm²
- 12MP, 15fps (USB3.1)

Al 6061: nom. 10-40µm

Al 6061: nom. 20-50µm

- Result suggests small diameter particles drifting out from center
- Standoff 40mm
- Not seen with other materials

Agenda

- Why full plume characterization?
 - Full spatial coverage:
 - Understand spray uniformity & stability
 - Detect unforeseen features
 - Get particle data over full plume volume
 - Input for sticking/forming models
 - Training sets for AI/neural models
 - Full time coverage:
 - Condition of spray equipment
 - Long term operation
 - Mass production without interruptions
 - Large scale AM
 - Still missing: particle temperature

Agenda

Full plume characterization: manager benefits

- Better yield
- Less downtime
- Easier requirements for process
 - Cheaper equipment
 - No He / high temperature requirement
- More applications
 - With economic sense

Thank you!

Trust is good. Control enhances trust.

Enjoy gap free trust with gap free spray control.

HiWatch CS-Q

Available now

