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One of the most promising hydrogen production 
techniques:

Alkaline Water Electrolysis
 High electricity consumption
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Nickel-Based Electrodes

Improve the energy 
efficiency of water 

eletrolysis

Reduce the 
reaction over-

potential Enhancement of the 
active surface area

Intrinsically active 
electrode materials 

Nanocrystalline Catalysts:

• Increased amounts of atoms located at interfaces between 
adjacent grains 

• Random atomic distances and densities 



Masked CS fin production technique
• In the cold spray process, pin fin geometries 

can be generated by using a mask  (e.g., 
wire mesh) 

• The mask is located between the nozzle exit 
and substrate surface
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Cormier, Y., Dupuis, P., Jodoin, B. et al. J Therm Spray Tech 24, 476–488 (2015).

Dupuis, P., Cormier, Y., Fenech, M., Jodoin, B. Int J Heat Mass Transfer 98, 650-661 (2016).



CFD simulations
• A parametric analysis was performed to analyze the effect of:

1. Nozzle inlet operating condition (pressure and temperature)
2. Substrate standoff distance (SOD)
3. Mask standoff distance
4. Mask wire diameter and opening size

• A total of 48 simulations were performed
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Mask and substrate SOD identification.



Study Parameters
1. Nozzle inlet operating condition

• Two operating conditions were analyzed:
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Case Inlet Pressure (MPa) Inlet Temperature ( C) 

Medium Pressure 2 400 

High Pressure 4 800 

 

2 & 3. Substrate and Mask SOD
• Two substrate SODs were analyzed (10 and 20 mm)

• The mask SOD was increased at 4 mm increments
 10 mm Substrate SOD 

(from Nozzle Exit to Substrate) 

20 mm Substrate SOD 

(from Nozzle Exit to Substrate) 

Mask SOD 

(from Nozzle Exit to Mask) 

4 mm 4 mm 

8 mm 8 mm 

12 mm 

 16 mm 

 



Study Parameters
4. Mask wire diameter and opening size

• Two mask wire diameters were analyzed (a small and large diameter)
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 Mask 1 Mask 2 Mask 3 Mask 4 

Wire Diameter (mm) 0.89 0.89 0.46 0.46 

Opening Size (mm) 1.22 1.65 1.14 0.81 

% Open Area 33 42 51 41 

Model 

    

 



CFD simulations
• To model the analysis, a 2-way coupled Eulerian-Lagrangian approach 

was used
• Since the flow and overall particle deposition is symmetric about two 

planes, a quarter symmetric model was implemented
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Quarter symmetric model used for the 
analysis.



CFD Modelling: Mesh
• The mesh consisted of 1,500,000 to 

2,600,000 cells (depending on the 
mask analyzed and SODs)
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Zoomed-in view of the mesh, showing structured and 
unstructured regions.



CFD Results: Gas Flow
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Effect of inlet pressure

Medium-pressure

High-pressure

Mask 1, 20 mm substrate SOD, 16 mm mask SOD



CFD Results: Particle Normal Velocity
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Medium pressure



CFD Results: Particle Normal Velocity
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High pressure



CFD — Challenges Faced, Insights Gained
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CFD is accurate but slow. One 
detailed run with millions of 
mesh cells can take hours or 
even days on a strong computer.

Needs lots of work for 
generating the geometry and 
meshing

Turning CFD’s heavy grind into 

lightning-fast, one-click 

answers—feed the data, unleash 

the predictor!

Necessary for digital twins



Why ML?
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1. significantly reduce computational costs 
while maintaining high predictive fidelity. 

2. a step toward creating real-time digital 
twins for cold spray systems. 

3. accurately capture the localized 
distributions of particle positions, 
velocities, and temperatures in masked 
cold spray processes
• offering a significant improvement 

over traditional ML models that 
primarily predict average values

Liu et al. Prospective on applying machine learning in 

computational fluid dynamics (CFD) simulation of 

metallurgical reactors. Ironmaking & Steelmaking. 2024; 

doi:10.1177/03019233241278460

https://doi.org/10.1177/03019233241278460


Overall Framework
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•Why Sampling: 48 CFD cases and ≈10⁶ 

particles on the substrate per case. Difficult to 

handle.

•First-Layer Model: KNN-KDE + physics-

aware projection → spatial probability 

distribution of particles.

•Second-Layer Model: Interpolation → 

symbolic feature discovery → weighted random 

forest → velocity & temperature of each 

particle.



Sampling – Part_1
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1. Multidimensional 

stratification bins y & z 

directions.

2. Greedy pick maximises 

diversity inside each bin.



Sampling – Part_2
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(# of stratified Layers,# of samples collected)

Genetic Algorithm searches 
best combination of two 

hyperparameters

Var Ratio 𝑓 =
Varsample 𝑓

Varorig 𝑓 + ε

Mean Ratio 𝑓 =
μsample 𝑓

μorig 𝑓 + ε

Global Var Ratio =
1

𝑁
෍

𝑘=1

𝑁

VarRatio 𝑓𝑘

Global Mean Ratio =
1

𝑁
෍

𝑘=1

𝑁

MeanRatio 𝑓𝑘

≈5000 particles on the 

substrate per case

Quality metrics/Fitness 
Score



1st  ML Model - Spatial Particle Distribution
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1st ML Model

•Inlet gas P & T

•Particle size

•Mask geometry

•Mask and 

substrate SODs

•Particle Spatial 

Distribution 

(y & z positions)

1st  ML Model 

The overall methodology is divided into two submodules:
Stage 1.1: a two-dimensional prediction framework that integrates 
local kernel density estimation (KDE) with nearest neighbor search 
(Initial predictions)
Stage 1.2: identifies unreasonable particle positions in the initial 
predictions and reallocating them accordingly (Correction)



Stage 1.1: KNN-KDE based model’s Prediction
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Two issues:
1. Particles located in the dead zone
2. Area of underestimation



Stage 1.2: Prediction After Projection fix
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(a)

(b)

(a) Distribution of reallocated 

predictions vs. ground truth (y 

and z) for the test sample 
(inlet pressure: 4 MPa, inlet temperature: 800°C, 

substrate SOD: 20 mm, mask SOD: 16 mm, wire 

diameter: 0.46 mm, opening size: 1.14 mm, open 

area: 51%)

(b) Local reallocation of under-

estimated predictions for the 

mentioned test sample.

FIXED !



2nd  ML Model - Predict Vp & Tp
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• Inlet gas P & T

•Particle size distribution 

(PSD)

• Mask geometry

•Mask and substrate SODs

•Particle Spatial Distribution  

(y & z positions of particles)

• Vp & Tp Distributions

2nd  ML Model 



Stage 2.1 Features & Interpolation
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•Issue: Only 48 raw cases → some features show 

almost no variation (red bars; contribute almost 

nothing to prediction) .

•Fix: Interpolation generates diverse synthetic 

samples, injecting fresh variability and preventing 

“constant-feature” collapse in the ML model.

•Noise control: Active-learning loop (right) keeps 

only the queried samples that improve validation, 

yielding a clean, well-balanced training set.

• Linear Interpolation

• 4 Points Cubic Spline 

Interpolation

• Inverse Distance 

Weighted (IDW)



Stage 2.1 Features & Interpolation Result
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Feature-importance changes after dataset expansion.
Right chart uses the 86 selected CFD interpolated set; left chart show the case 

without interpolated dataset. 

Feature importance before interpolation (left) vs. after interpolation 
(right).



Stage 2.2 Symbolic Regression
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•Genetic-programming loop (a) evolves 

candidate formulas, keeps the fittest 

(lowest val-MSE), and breeds new ones 

by crossover & mutation.

•Symbolic tree Example (b): a compact 

tree mixing cos, sin, divides, and 

plus/minus operators to represent 

nonlinearities.

(a)

(b)



Stage 2.3 Weighted Random Forest
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•10-fold cross-validation tunes tree depth, count, and 

weighting rule.

•Weighted scheme: each tree’s vote is inversely 

proportional to its Out of Bag (OOB) error → down-

weights weak trees, boosts robust ones.



Two-Stage ML Prediction vs. CFD Ground Truth
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Two-Stage ML Prediction vs. CFD Ground Truth
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Results
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Particle impact modelling
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• Goal: Show how ML can be used to predict the quality of a particle impacts
• Tuning spray parameters using simulation software or experimental is time consuming 

ANSYS LS DYNA

Script to 
Calculate 

Bonding using 
Cold Welding 

Criteria
6-Layer                

Artificial Neural 
Network

Bonding Data

• Element Status

• Bonded/De-bonded  
/Never bonded Areas

Model to predict bonded 
area at any velocity and 

temperature
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Bonding Criteria
• Bonding mechanism is assumed to be similar to 

the one in the cold welding

• Metallurgical bonding requires intimate metal-
metal contact and appropriate localized pressure

• Onset of bonding = Critical Velocity

• Ψ – Surface Expansion Factor

• P – Pressure

𝜎𝑏 = 𝑃 ∙ Ψ

https://www.homemadetools.net/forum/cold-welding-gif-56268
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Algorithm Overview

Initial Impact Phase Rebounding Phase
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FEM Cold Welding Model Validation

• Onset of the number of bonded 
elements increasing can be 
assumed to be the critical velocity 
range

• Our FEM model lies within the 
published ranges for experimental 
and numerical work for critical 
velocity of al-on al

Veera Panova, Acta Materialia (2024) Our Model
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Dataset

Particle 
Material

Substrate 
Material

Velocity 
Range (m/s) 

(+10)

Particle Temperature 
Range 

(K) (+50)

Substrate 
Temperature Range 

(K) (+50)

Total 
Data 

Points

Al-6061-T6 Al-6061-T6 200-1000 300-500 300-500 1377

• Varying both the substrate and particle temperatures

• Data Stored:
• Images of the bottom interface, element bond 

statuses, bonded/de-bonded areas

Bonded

De-bonded  

Never bonded
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Bond Status of Interface 
Elements

Bonded/De-bonded/Never 
Bonded Areas

Impact Velocity

Particle Temperature

Substrate Temperature

• Trained on calculated FEM bonding data

• 6-Layer Artificial Neural Network with ReLU activation function 

Inputs Machine Learning Model Model Outputs

ML Model Details
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Results
• ML predicted bonded area increases drastically after 690

o The critical velocity range for Al/Al experimentally is between 680 – 870 m/s [10] 

[8] Schmidt T, Assadi H, Klassen Journal of Thermal Spray Technology (2009) 18(5-6) 794-808

[9] Bae G, Xiong Y, Lee C Acta Materialia (2008) 56(17) 4858-4868

[10] Raletz F, Vardelle M, Ezo’o G Surface and Coatings Technology (2006) 201(5) 1942-1947

[11] Zhang J, Zhou X, Wang J Article in Acta Metallurgica Sinica (English Letters) (2011) 24 43-53
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BONDING EVOLUTION FOR MULTI-PARTICLE IMPACTS

Particle 1

Al-on-Al

20µm Particle | 25dp | 800 m/s | Ts = 300°C 

Particle 2
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BONDING EVOLUTION

Bonded

De-bonded  

Never bonded

700 m/s 750 m/s 800 m/s 850 m/s

Before 
2nd 

Impact

After 
2nd 

Impact



Conclusions and future work
• Reducing the runtime from ~ 18 hours using CFD  to just 12 s using the above 

ML surrogate
• The model attains mean absolute errors of roughly 2.2 m/s  for velocity magnitude and 

5.5 K for temperature

• This type of ML-based surrogate model forms a critical component of a 
broader digital twin (DT) framework

• With only minor parameter adjustments, the model also predicts particle 
distribution, impact velocity, and temperature for flat, unmasked substrates

• We anticipate that the framework can be readily extended to different 
powders, carrier gases, or nozzle geometries
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Future Work
• Predicting bond strength of coatings using trained 

models on single and multi-particle impacts 

• Prediction of bonded region using Generative 

Adversarial Networks (GAN)

G. Shayegan et al., Materials and Design 60 (2014) 

Bonded

De-bonded  

Never bonded



Thank you for your attention !
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