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Rapid and differentiable
macroscopic modeling of
the cold spray process
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Macroscopic model

* No CFD
* No particle impact
* Only mass deposition at the part scale
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Why do we need a macroscopic model?

« Optimal control of coating
thickness

« Optimal repair

« Optimal additive manufacturing
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W. Li et al., General-purpose numerical deposition modeling
methodology based on mesh geometry reconstruction
strategy in cold spray additive manufacturing system,
Surface & Coatings Technology 464 (2023) 129563

R.F. Vaz et al., Metal Knitting: A New Strategy for Cold Gas
Spray Additive Manufacturing, Materials 2022, 15(19), 6785
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What type of models?

Tool Path
Cold Spray parameters
Materials

Cold Spray Deposition

Forward model
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Backward model



Forward Model

Deposit Thickness Increment
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dz4,(r) = —DE(a)é(r)dt - -
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Forward Model

where, ¢(r) = Ae_(i)% and DE(«)

Depot Height (mm)
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Parameters A, o, n, a, and b fitted experimentally.



Code Implementation

Key Features

e Built with PyTorch &
PyTorch3D for mesh
handling

@ Ensures mass conservation.

@ Achieves 1.5 x real-time
simulation.
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Shadow Effect

e Modeling Approach:
Ray-tracing technique

- originating from the nozzle.

Height (mm)

e Shadow Effect:
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Differentiable Code

Code is differentiable.
Enables optimization by minimizing loss:

L(p) - ||Me5hsimulation(p) - MeShtargetH-

Gradient VL(p) is easily computed.

Used for model calibration and tool path planning.
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Model Calibration

o Recall: ¢(r) = Ae ()| DE(a) = Ly
o Calibrated using optimization methods.

@ Profile parameters: 1 pass line deposition at 90°
(experimentally measured).

@ Deposition efficiency parameters: 10 pass line deposition at
90° (experimentally measured).
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Model Calibration

Fitted profile - 1 pass, 90° Fitted profile - 10 pass, 90°
— Experimental Profle — Experimental Profle
— fitted profle — fitted profle

Profile of deposition (um)
Profile of deposition (um)

En [ s En [ 5
Radial Distance (mm) Radial Distance (mm)

(a) 1 pass calibration (b) 10 passes calibration
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Model Validation

@ Model validation done with measurements of:

@ 5 passes at 90°
e 1 pass at 40°, 50°, 60°, and 80°

Profile of deposition (um)

Fitted profile - 5 pass, 90°

5 1) 25
Radial Distance (mm)

—— Experimental Profile
—— Fitted profile
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Model Validation

Fitted profile - 1 pass, 60° Fitted profile - 1 pass, 80°

— Experimental Profle
— Fited pofle

— Experimental Profle
— Fited profe o

Profile of deposition (um)

Profile of deposition (um)

En o % En @ %
Radial Distance (mm) Radial Distance (mm)
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Tool Path Planning

o Target shape: Line deposition with
fixed spray angle 6 from the z-axis.

@ Optimization: GradientAdescent to 12
find the optimal angle 6.

@ Convergence to desired angle 0
achieved. [,
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Tool Path Planning

Nozzle Angle (°)

Nozzle angle optimization (plane substrate)

40 60
Iterations

Nozzle Angle (°)

Nozzle angle optimization (stair substrate)

40 60
Iterations
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Conclusion and Perspectives

Areas for Improvement:
@ Enhance model calibration with more precise experimental
data.
@ Introduce additional optimization parameters in the simulation.

@ Resolve remeshing challenges during extended spray durations
and deposit buildup.
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