

Rapid and differentiable macroscopic modeling of the cold spray process

Sergio Garcia Castro

Mines Paris - PSL

Macroscopic model

- No CFD
- No particle impact
- Only mass deposition at the part scale

Why do we need a macroscopic model?

- Optimal control of coating thickness
- Optimal repair
- Optimal additive manufacturing

Why do we need a macroscopic model?

R.F. Vaz et al., Metal Knitting: A New Strategy for Cold Gas Spray Additive Manufacturing, Materials 2022, 15(19), 6785

W. Li et al., General-purpose numerical deposition modeling methodology based on mesh geometry reconstruction strategy in cold spray additive manufacturing system, Surface & Coatings Technology 464 (2023) 129563

What type of models?

Tool Path
Cold Spray parameters
Materials

- - -

Forward model

Backward model

Forward Model

Deposit Thickness Increment

$$ec{dz}_{ec{v}_N}(r) = -DE(\alpha)\phi(r)dt \cdot \frac{ec{v}_N}{\|ec{v}_N\|}$$

Forward Model

where,
$$\phi(r)=Ae^{-\left(\frac{r}{2\sigma}\right)^{2n}}$$
 and $DE(\alpha)=\frac{1}{1+e^{-s(\alpha-b)}}$:

Parameters A, σ , n, a, and b fitted experimentally.

Code Implementation

Key Features

- Built with PyTorch & PyTorch3D for mesh handling
- Ensures mass conservation.
- Achieves $1.5 \times \text{real-time}$ simulation.

Shadow Effect

• Shadow Effect:

• Modeling Approach: Ray-tracing technique originating from the nozzle.

Differentiable Code

- Code is differentiable.
- Enables optimization by minimizing loss:

$$L(p) = \|\mathsf{Mesh}_{\mathsf{simulation}}(p) - \mathsf{Mesh}_{\mathsf{target}}\|.$$

- Gradient $\nabla L(p)$ is easily computed.
- Used for model calibration and tool path planning.

Model Calibration

- Recall: $\phi(r) = Ae^{-\left(\frac{r}{2\sigma}\right)^{2n}}$, $DE(\alpha) = \frac{1}{1+e^{-a(\alpha-b)}}$
- Calibrated using optimization methods.
- Profile parameters: 1 pass line deposition at 90° (experimentally measured).
- Deposition efficiency parameters: 10 pass line deposition at 90° (experimentally measured).

Model Calibration

(a) 1 pass calibration

(b) 10 passes calibration

Model Validation

- Model validation done with measurements of:
 - ullet 5 passes at 90°
 - \bullet 1 pass at 40°, 50°, 60°, and 80°

Model Validation

Tool Path Planning

- Target shape: Line deposition with fixed spray angle $\hat{\theta}$ from the z-axis.
- Optimization: Gradient descent to find the optimal angle $\hat{\theta}$.
- Convergence to desired angle $\hat{\theta}$ achieved.

Tool Path Planning

Conclusion and Perspectives

Areas for Improvement:

- Enhance model calibration with more precise experimental data.
- Introduce additional optimization parameters in the simulation.
- Resolve remeshing challenges during extended spray durations and deposit buildup.