

Practical Implementation of Helium-Nitrogen In-Line Gas Mixing for Enhanced Cold Spray Performance and Cost Optimization

1. About CenterLine

- 2. Review a Mixed Gas study by University of Ottawa
- 3. Review a Mixed Gas Study by ES3 for the NAVSEA, NAVAIR, USMC Implementation
- 4. Further savings with a low-pressure N2-He mixing gas management system
- 5. Summary of Economical advantages of N2-He mixing

CenterLine since 1957

 Design & manufacture of automated welding, metal forming, configured machinery solutions, resistance welding guns, presses, and resistance spot welding consumables for the Auto Industry in the World.

BEST MANAGED COMPANIES Platinum member

© 2023, CenterLine (Windsor) Limited

^{centered on solution} Supersonic Spray Technologies (SST) Division since 2003

- Full range of SST patented standard cold spray units
- Turnkey SST Cold Spray Systems
- SST Cold Spray grade Powders

enterline-

- SST Spare parts, Consumables, and support
- Process development and Qualification
- Job shop services

Helium

- Triple supersonic gas jet velocity compared to Nitrogen due to its lower molecular weight
- Enhance deposition efficiency and overall cold spray deposit properties
- Make it easier to spray hard materials at low pressures and temperatures
- high cost and limited availability
- Helium Recovery: capital-intensive \$\$\$
- Helium Recovery: effective if there is at least a 50% helium concentration in the spray Chamber
- Helium Recovery: Hard to justify with portable cold spray

www.cntrline.com

He=4 g/mol

and

www.cntrline.com

Helium – Nitrogen Mixing

- \checkmark Does a mixed down He gas perform better than N₂?
- ✓ Does the mix reflect on real Gas savings?
- Previous gas mixing research, the gas is always premixed in containers at set ratios, thus limiting gas mixing to laboratory scale spray trials and complex mixing operations

1. About CenterLine

2. Review a Mixed Gas study by University of Ottawa

- 3. Review a Mixed Gas Study by ES3 for the NAVSEA, NAVAIR, USMC Implementation
- 4. Further savings with a low-pressure N2-He mixing gas management system
- 5. Summary of Economical advantages of N2-He mixing

Mixed Gas Study at University of Ottawa

Peer Reviewed, ASM Springer JTST, vol 28, pages 161–173, (2019) An Economical Approach to Cold Gas Dynamic Spraying using In-Line Nitrogen-Helium Blending

Daniel MacDonald, S. Rahmati, Bert Jodoin , Wally Birtch

- Developed a method to mix Helium and Nitrogen in-line capable of blending nitrogen and helium at user-defined ratios
- Conducted the study, measuring particle velocity, deposition efficiency, and coating properties
- Developed a preliminary cost model to identify the best nitrogen-helium ratios for specific materials

Mixed Gas Study at University of Ottawa

31 g/min (15-5 PH SS) 10 g/min (Al / SST-A5001)

- > Throat size:
- Pressure:
- > Temperature:
- Powder flow Rate:
- Standoff Distance
- Heater Energy
- Tank Min Pressure N₂
- Tank Min. Pressure He
- Travel speed

10 mm 15 KW 48 bar 52 bar 5-25 mm/s

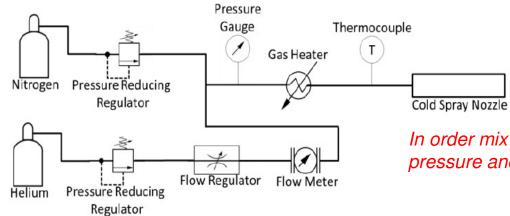
2.0 mm

550 C

20 to 35 bar*

* pressure was varied to maintain constant temperature of 550C at constant 15KW heater power

Particle Velocity: Tecnar ColdSprayMeter eVOLUTION


35 bar - 15 KW 650C

Mixed Gas Study at U of Ottawa

In order mix in-line at controllable ratios, both the pressure and flow rates were carefully regulated

@ 500 psi / 35 bar

Percentage helium, vol.%	Helium flow rate (SCFM)				
0	0				
25	8.2				
50	19.5				
75	37.6				
100	80.9				

He %	Sonic Velocity (m/s)			
0	534			
25	852			
50	1088			
60	1170			
75	1286			
100	1461			

© 2023, CenterLine (Windsor) Limited

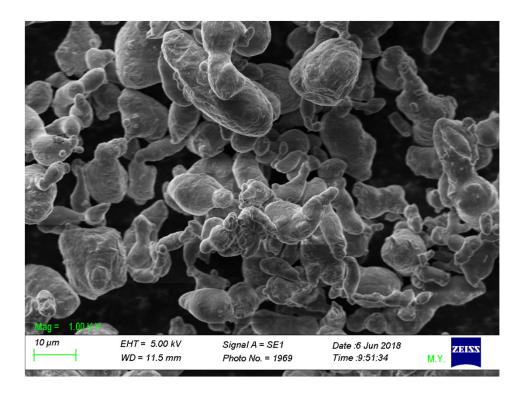
10

www.cntrline.com

Mixed Gas Study at University of Ottawa

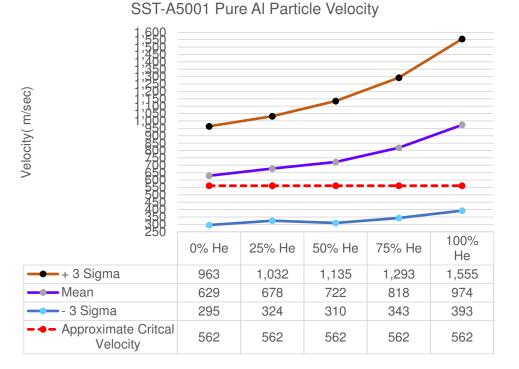
Materials

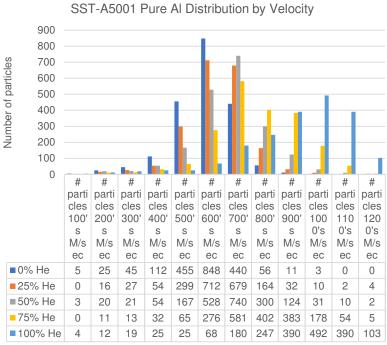
Powder	Substrate	Surface Prep
Aluminum (SST A5001)	A6061-T6 substrate	Acetone cleaned
15-5 PH Martensitic / Precipitation Hardening SS (Sandvik Osprey®)	AISI1020 substrate	Acetone, Grit blast, scrubbing



Mixed Gas Study at University of Ottawa

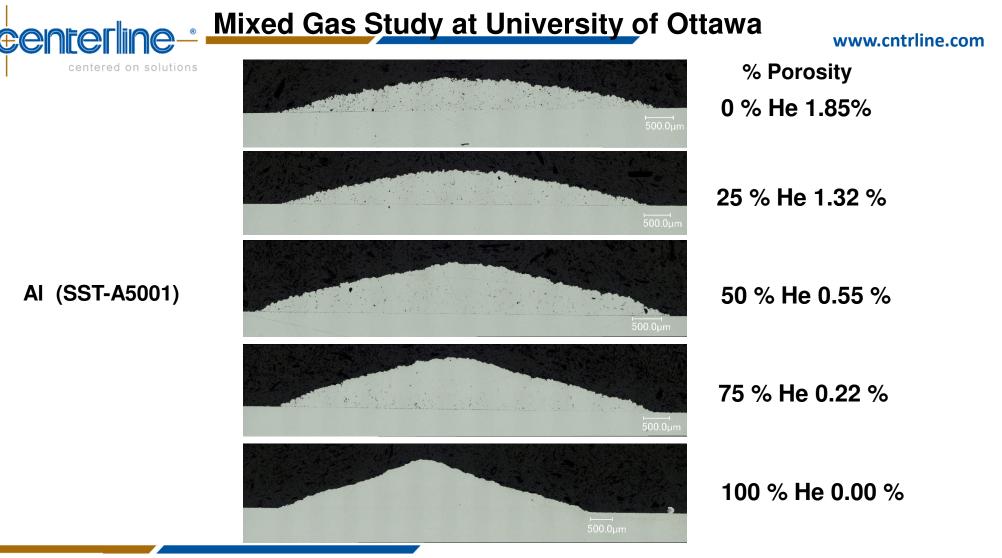
> SST-A5001 (Al 99.5%) (CenterLine, Canada)


> The particle size distribution (by sieving): -45μ m to $+5\mu$ m


≻ Cost \$35.00/lb

Mixed Gas Study at University of Ottawa Particle Velocity Measurements – 99.5% AI

Particle Velocity

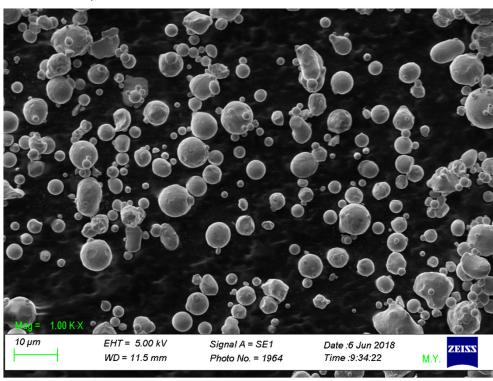


tenterline

centered on solutions

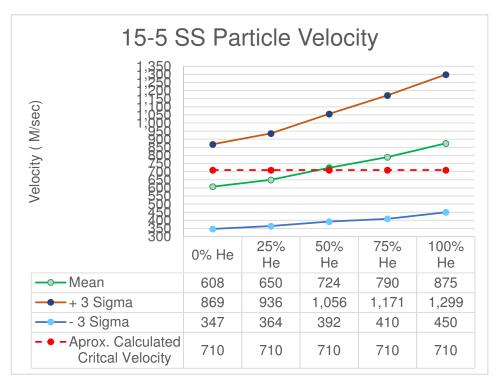
© 2023, CenterLine (Windsor) Limited

The Mean and the Standard of Deviation was calculated based on 2000 particles measured


Mixed Gas Study at University of Ottawa

- 15-5PH Precipitation Hardening SS (16.18%Cr 4.45%Cu 3.66%Ni 1.47%Si) (Sandvik Osprey®, UK)
- > The particle size distribution: (by laser diffraction):
 - ➤ d10=3.2µm

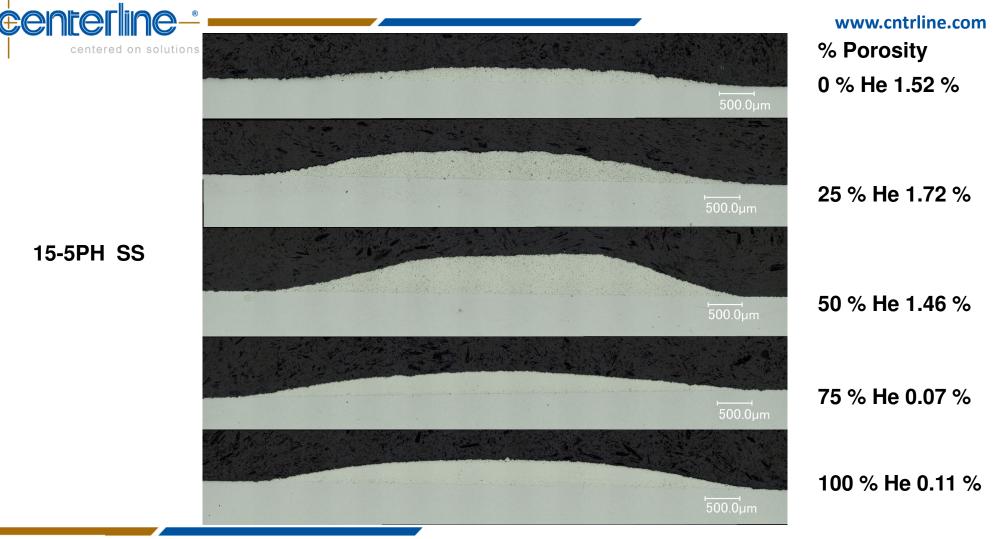
centered on solutions


- ➤ d50=5.7µm
- ➤ d90=9.7µm
- ≻ Cost : \$95.00/lb

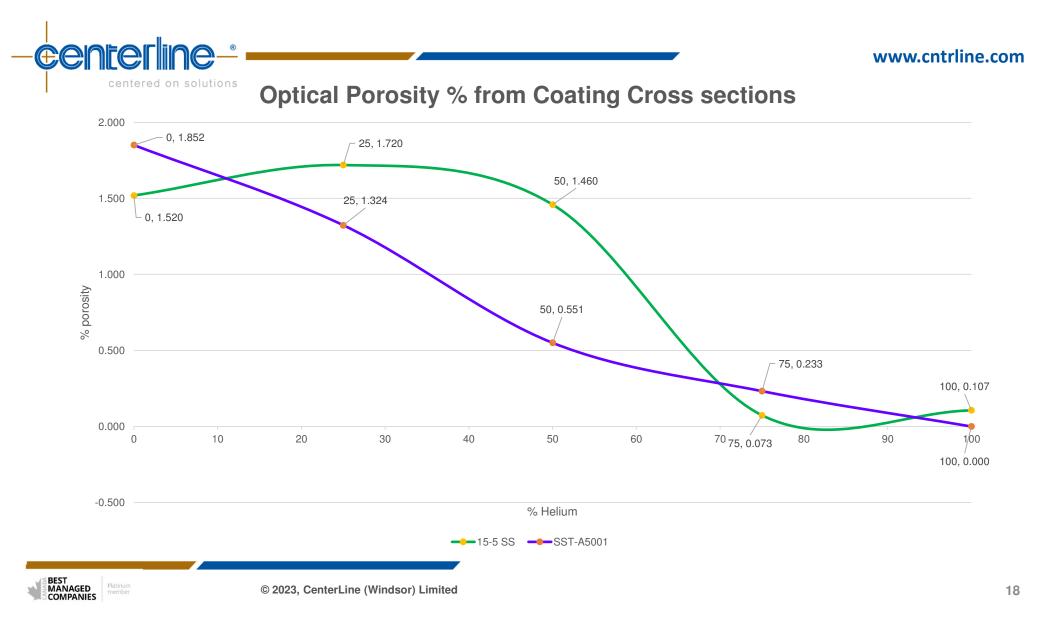
<u>éenterline</u>

Mixed Gas Study at University of Ottawa Particle Velocity Measurements – 15-5 PH SS

1000 900 800 Number of Particles 700 600 500 400 300 200 100 0 # # # # # # # # # particle S S S s 300's s 400's s 500's s 600's s 700's s 800's s 900's 1000's 1100's 1200's M/sec 0 % He 13 189 650 865 258 15 7 2 0 0 25 % He 38 5 3 90 402 920 518 16 8 0 ■ 50% He 0 41 183 534 831 319 72 13 3 0 **75% He** 0 344 770 455 232 74 8 16 66 34 ■ 100% He 0 0 49 147 482 441 523 198 149 10 Particle Velocity

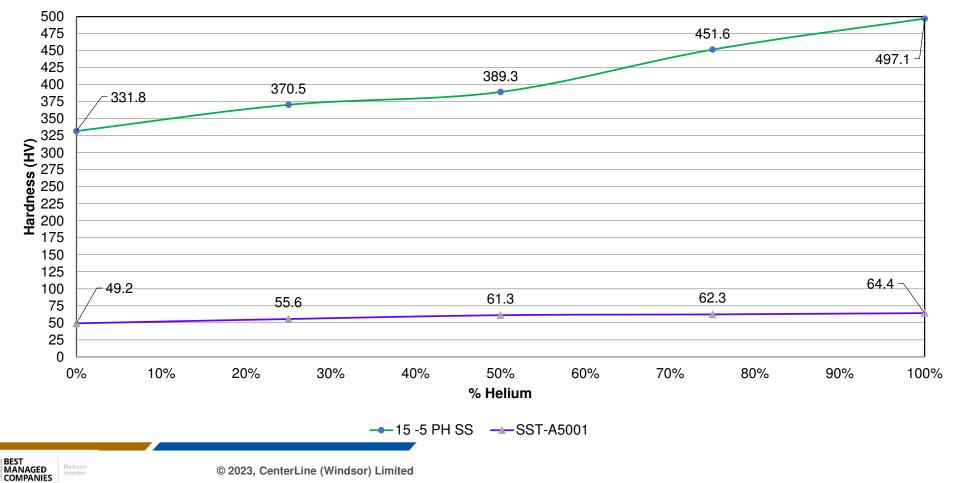

15-5 SS Particle Distribution by Velocity

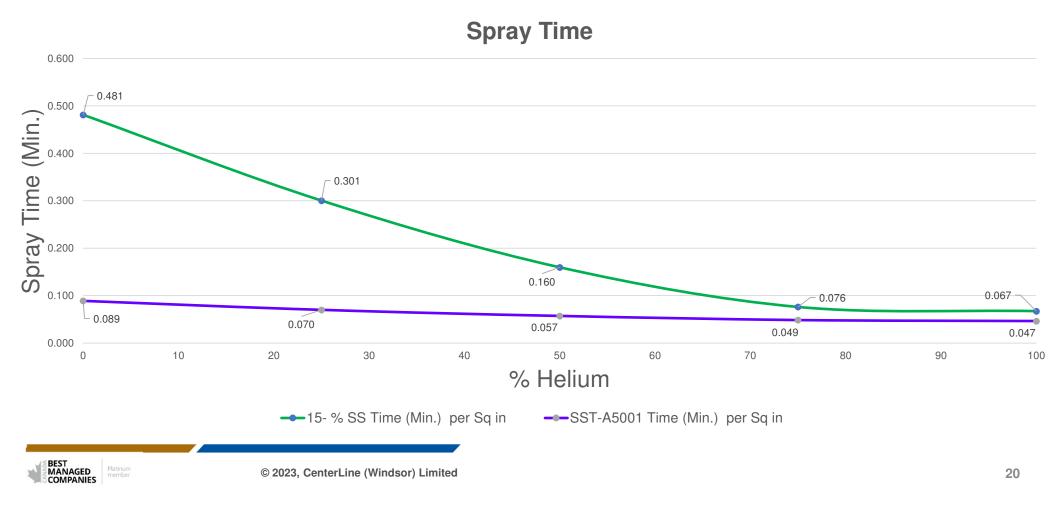
The Mean and the Standard of Deviation was calculated based on 2000 particles measured

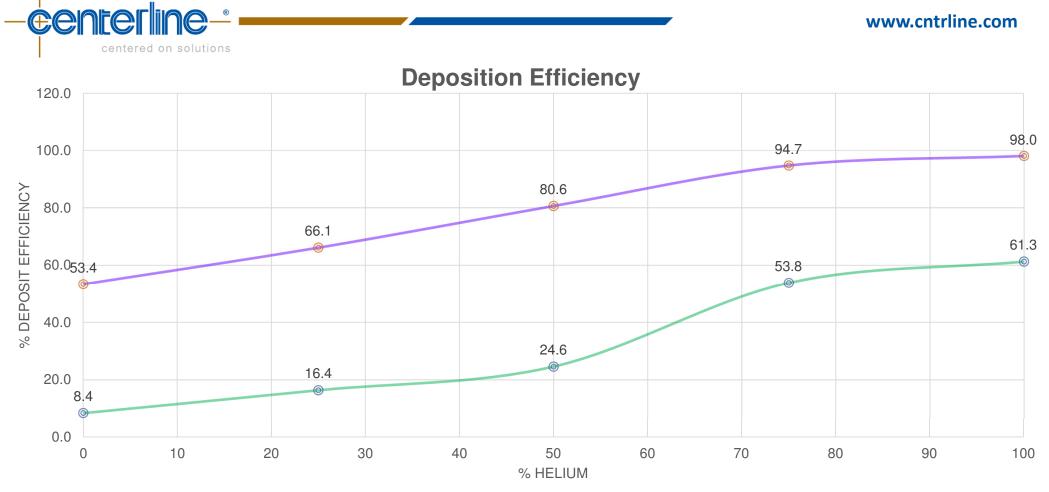


<u>Éenterline</u>

centered on solutions





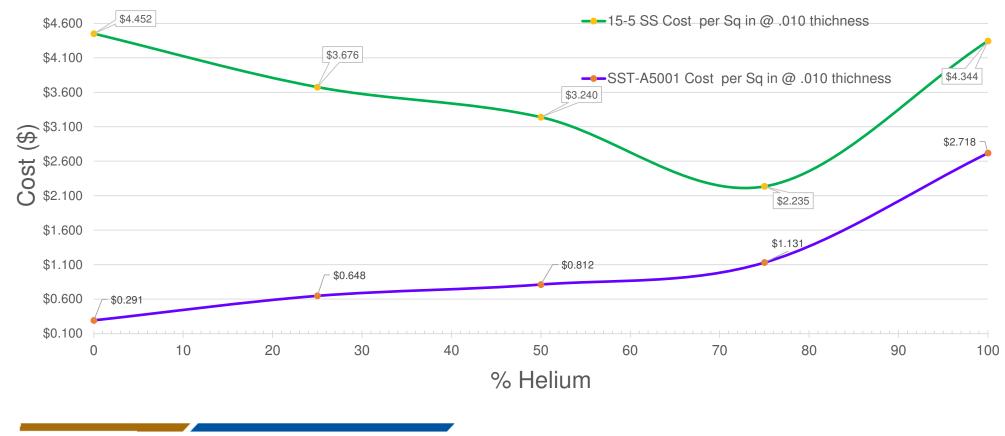


Hardness (HV)

21

Initial Cost Model

Assumption: coating quality attributed (porosity and hardness) are adequate for the specific application under all deposition conditions


The cost of the deposited powders is calculated if the DE as a function of helium percentage is known

C = P + HC + NC + LC + EC	Symbol	Descrip	Cost
	HC	Helium	\$0.92/cuft
C is the cost per Sq In/.010" Thickness of coating deposited	NC	Nitrogen	\$0.04/cuft
	Р	Aluminum	\$35/lb
PC is the total cost of powder used			
HC total cost of Helium used	Р	15-5PH SS	\$95/lb
NC total cost of Nitrogen used	LR	Labour rate	\$75/hr
LC total labor cost	LN		φ75/11
EC total electricity cost	ER	Electricity rate	\$0.20/KWHr

Total Cost per Sq in @ .010 thickness

U Ottawa Summary

Justification for Using Nitrogen/He Mixture, when:

✓ Powder Material costs are high✓ Nitrogen Deposition Efficiency is low

Wally Birtch

Sr. Account Manager- Dipl. Aerospace Technology

Cell: 248-217-1173

wally.birtch@cntrline.com

Content

1. About CenterLine

- 2. Review a Mixed Gas study by University of Ottawa
- 3. Review a Mixed Gas Study by ES3 for the NAVSEA, NAVAIR, USMC Implementation
- 4. Further savings with a low-pressure N2-He mixing gas management system
- 5. Summary of Economical advantages of N2-He mixing

ES3 Study for NAVSEA, NAVAIR, USMC Implementation

- Improvements made to the mixing delivery system hardware to:
 - (a) increase volume mixing flexibility between He and N₂
 - (b) increase flow capacity, and
 - (c) implement more automation
- Validated cold spray coatings for nitrogen/mixes on multiple substrates using three commercial cold spray systems – this report only contemplates results with the VRC Gen III system
- Coatings must meet fit, form, and function requirements to restore parts for routine operation, including corrosion and wear resistance

ES3 Study for NAVSEA, NAVAIR, USMC Implementation

System Banner

Increased Flow Meter Capacity:

- Two separate outlet ports: one at 700 PSI and one at 200 PSI.
- Human-Machine Interface (HMI) & Fully Automated Controls

Gas Mixing Delivery System Flow Rates:

- Designed around unique spray characteristics of
 •VRC (high pressure),
 - •Centerline (mid and low pressure)
 - •Inovati Cold Spray Systems (low pressure)

enterline

-Centerline-

www.cntrline.com

ES3 Study for NAVSEA, NAVAIR, USMC Implementation VRC Gen III

 The baseline tests for the SAAM-AL7075- G1H1 powder with 100% helium

ES3 Study for NAVSEA, NAVAIR, USMC Implementation

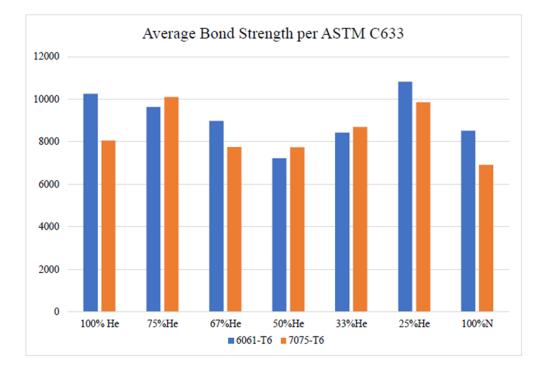
Materials

Powder	Substrate	Surface Prep
Solvus SAAM-7075AL-G1H1	A7075-T6 substrate	Grit blasted and Alcohol Wipe
Solvus SAAM-7075AL-G1H1	A6061-T6 substrate	Grit blasted and Alcohol Wipe

ES3 Study for NAVSEA, NAVAIR, USMC Implementation

For the materials tested, a mixture of Helium and Nitrogen may achieve equivalent coating performance characteristics as 100% He

Overall Best Mixes for all categories:

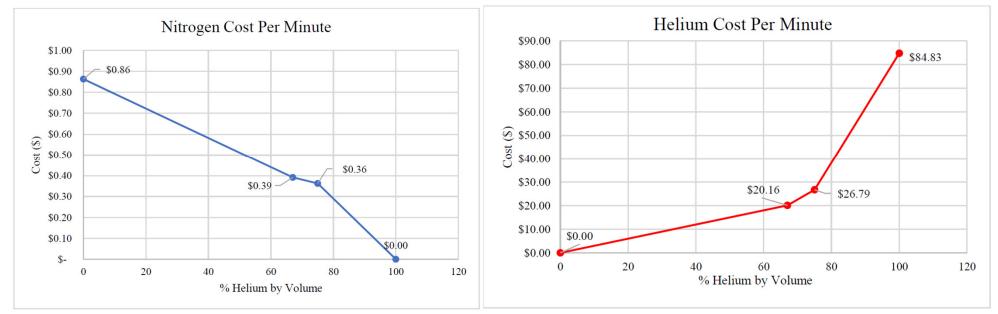

25% N₂ - 75% He

tenterline

33% N₂ – 67% He

Overall Worst Mixes:

- 50%N₂-50%He
- worse than 25%N₂/75%He
- varied significantly from each spray run

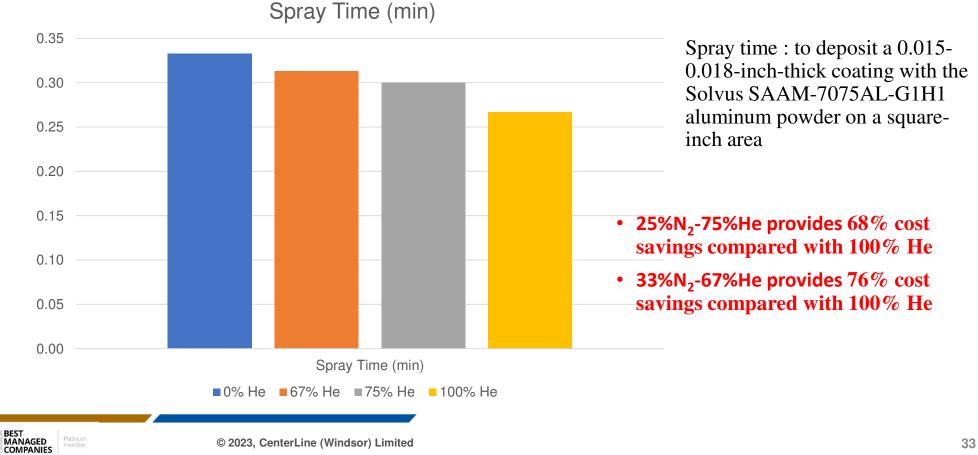

Centered on solutions

www.cntrline.com

ES3 Cost Analysis

Gas Cost per Minute

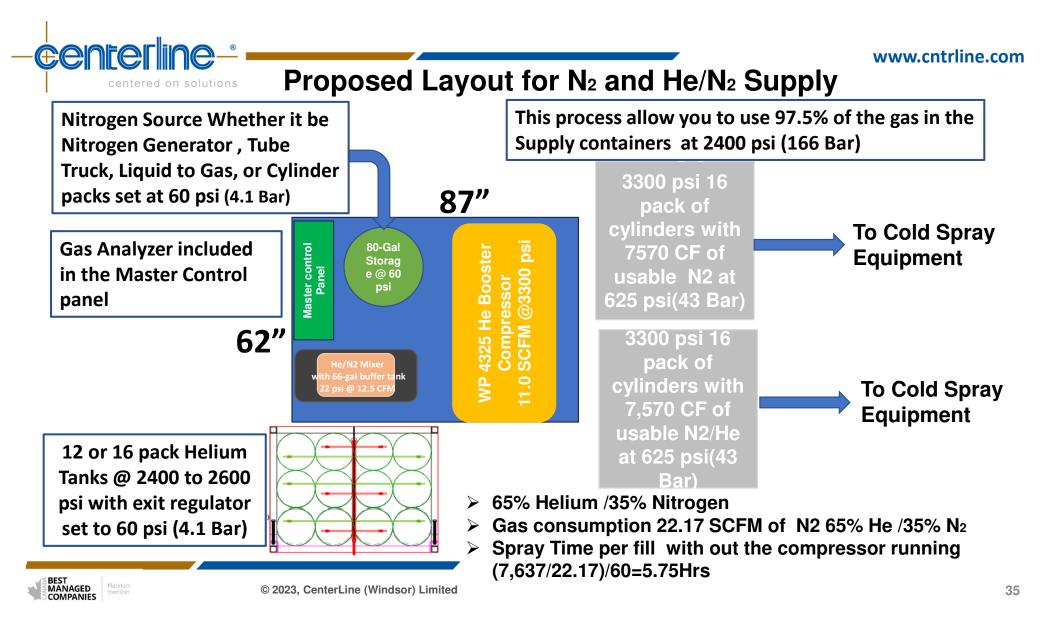
VRC Gen III 12-pack cost nozzle characteristics Spray parameters Gas flow rate gas cost per CF



BEST MANAGED COMPANIES

Platinum member

ES3 Cost Analysis



Content

- 1. About CenterLine
- 2. Review a Mixed Gas study by University of Ottawa
- 3. Review a Mixed Gas Study by ES3 for the NAVSEA, NAVAIR, USMC Implementation
- 4. Further savings with a low-pressure N₂-He mixing gas management system
- 5. Summary of Economical advantages of N₂-He mixing

Economical Advantages of Low-Pressure Mixing System

<u> Canta</u>

www.cntrline.com

on solutions

Cost Analysis of 15-5 PH SS Based on U of Ottawa Data with Low-Pressure Mixer

	The Chart below is utilizing the Max. Heater capacity of 15 Kw to maintain 550 °C At 60 PSI Helium Min Tank Pressure															
Gas	Gas Pressure (psi)	Sonic Velocity (m/s)	Flow rate SCFM	Gas Cost/ min. @60 psi tank supply	% cost savings to He cost	% Velocity to He Velocity	Measured 15-5			Gas & Powder Cost per Sq in @ .010 thichness	% cost savings to He cost	DE	Time (Min.) per Sq in @ .010 thichness	Burdened Labor@ \$75/hr. Cost per Sq in @ .010 thichness	Total Cost per Sq in @ .010 thichness	% cost savings to He cost
He 100%	370	1,461	60.24	\$56.35			875			\$4.26		62.0%	0.067	\$0.084	\$4.344	
He 75% N2 25 %	290	1,286	29.71	\$21.14	62.48%	88.02%	790	90.29%	\$2,112.48	\$2.14	49.77%	53.0%	0.076	\$0.095	\$2.235	58.79%
He 50% N2 50 %	310	1,088	24.67	\$12.03	78.65%	74.47%	724	82.74%	\$2,659.08	\$3.04	28.64%	25.0%	0.160	\$0.200	\$3.240	40.27%
He 25% N275 %	405	852	26.79	\$7.07	87.46%	58.32%	650	74.29%	\$2,956.92	\$3.30	22.54%	16.4%	0.301	\$0.376	\$3.676	32.24%
N2 100%	500	534	28.67	\$1.15	97.96%	36.55%	608	69.49%	\$3,312.24	\$3.85	9.62%	8.4%	0.481	\$0.602	\$4.452	17.93%
							At 625 PSI Heliu	m Min Tank Pre	ssure							
Gas	Gas Pressure (psi)	Sonic Velocity (m/s)	Flow rate SCFM	Gas Cost/ min. @625 psi tank supply	% cost savings to He cost	% Velocity to He Velocity	Measured 15-5 PH SS Mean Particle Velocity (m/s)	Velocity to			% cost savings to He cost	DE	Time (Min.) per Sq in @ .010 thichness	Burdened Labor@ \$75/hor. Cost per Sq in @ .010 thichness	Total Cost per Sq in @ .010 thichness	% cost savings to He cost
He	370	1,461	60.24	\$80.44			1007			\$5.34		60%	0.067	\$0.084	\$5.424	

This further reduces the Total cost from \$2.97 to \$2.24per sq in for an additional 10.5%

\$332,000

Solutions Economical Advantages of Low-Pressure Mixing System Savings and Return on Investment

Cost of Nitrogen/Helium Booster with the capability of Mixing Heluim & Nitrogen at 60 psi	ę
---	---

	625 psi pure He	60 psi75% He 25% N2			Savings	Capital Cost			Pay Back Peri	od	
\$ per min of spray	\$80.44	-	\$21.14	=	\$59.30	\$332,000	1	\$59.30	=	5,599	min. of Spray
\$ per Hour of spray	\$4,826.40	-	\$1,268.58	=	\$3,557.82	\$332,000	1	\$3,557.82	=	93	Hours. of Spray

With the Gas Management System It will allow you to Start up and Cool down with Nitrogen if you are using Helium or He/N2 mixture

			Cost			Savings from
		Cost with He	with75%He/25%	Cost with N2	Savings from	75%He/25% N2
	Time (Min.)	@ 625 psi	N2 @ 60 psi	@ 625 psi	He @ 625 psi	@ 60 psi
Cost of Gun Start up to Temperature	1.25	\$100.55	\$26.43	\$1.43	\$99.12	\$25.00
Cost of Cool Down to 150 °C	2.50	\$201.10	\$52.86	\$2.87	\$198.23	\$49.99
Total	3.75	\$301.65	\$79.29	\$4.30	\$297.35	\$74.99

48	Working Weeks/yr
5	Days/week
240	Days /year
0.389	Hours per Day

93 Hrs of spray/240 Days=

60 psi(4.1Bar) tank pressure savings are \$59.30/min. Capital investment is approximately \$332,000 needing 93 hrs, for a return

Content

- 1. About CenterLine
- 2. Review a Mixed Gas study by University of Ottawa
- 3. Review a Mixed Gas Study by ES3 for the NAVSEA, NAVAIR, USMC Implementation
- 4. Further savings with a low-pressure N2-He mixing gas management system
- 5. Summary of Economical advantages of N2-He mixing

- Not all powders can take advantage of N₂-He Mixing depending on the cost of the powders and Nitrogen Deposition Efficiency
- > 15-5 SS: 25%N2–75%He particle velocity about 90% of particle velocity with 100% He
- > 15-5 SS: 25%N2–75%He provided 48% cost savings compared with 100% He
- 15-5 SS: 25%N2–75%He savings can provide savings to pay back an investment on a complete gas mixing system in about 68 spray hours
- For the Materials tested, there appear to be a range from 50% to 75% He that gives the best economical advantage without giving up deposit performance.
- With a low Supply Pressure of 60 psi (4.1 Bar) it is possible to utilize up to 97.5% of the He gas in a Cylinder, compared to 74% at 625psi (43 Bar) providing additional net savings of about 30% in gas costs

THANK YOU

Julio Villafuerte

Corp. Technology Strategist - Ph.D., P.Eng.

Wally Birtch Sr. Account Manager- Dipl. Aerospace Technology

Cell: 519-890-1867 julio.villafuerte@cntrline.com

Cell: 248-217-1173 wally.birtch@cntrline.com

CenterLine (Windsor) Limited

Supersonic Spray Technologies 655 Morton Drive, Windsor, ON N9J 3T9 Telephone 519-734-8330

