Monitoring the Cold Spray Process: Real-time particle velocity monitoring through airborne acoustic emission analysis

S. Koufis, N. Eskue, D. Zarouchas, J.A. Pascoe

Aerospace Structures & Materials Faculty of Aerospace Engineering

Process monitoring

Process monitoring

Particle velocimetry techniques

- Measure velocity, particle density
- Bulky equipment
- interrupt spray to measure \rightarrow waste

Koivuluoto et al., Coatings (2020)

Airborne acoustic emission (AAE)

- Experienced operators can "hear" process anomalies \rightarrow Information in sound
- Non-intrusive nature
- AAE has been used for other processes successfully
- Knowledge available for combining AAE with statistical and machine learning tools

Experimental procedure

Experimental procedure

Experimental procedure

Test	Pressure (MPa)	Temperature (°C)	Average particle
			velocity (m/s)
1	6	600	670
2	4.5	600	625
3	7	600	690
4	5	500	620
5	3.5	600	580
6	5	400	600 (average)

Results and discussion

Results and discussion

3 layers – 20 passes

Results and discussion

- **7 T**∪Delft
- Spray overspray separated manually
- Feature exploration performed to distinguish spray from overspray and diagnose velocity

Results and discussion – **Statistical analysis**

• St.D. of RMS too high for a rule-based model

12

No obvious frequency peak shifts •

Pearson correlation:

$$r_{xy} = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2} \sqrt{\sum_{i=1}^n (y_i - ar{y})^2}}$$

• 17 frequencies with score>0.99

Pearson correlation:

$$r_{xy} = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2}} \sqrt{\sum_{i=1}^n (y_i - ar{y})^2}$$

• 17 frequencies with score>0.99

Test	Pressure (MPa)	Temperature (°C)	Average particle
			velocity (m/s)
2	4.5	600	625
4	5	500	620

Results and discussion – Machine learning

- **″u**Delft
- Trained only with spray segments
- Aimed to minimise reconstruction error (RMSE)

- Threshold = test loss $+2\sigma$ (agnostic of overspray)
- Accuracy 83.76%
- State transition is visible

TUDelft

- Very accurate on the third class
- Some confusion between low and medium classes, probably due to test 6.

Confusion Matrix					
Low	74.0% (±10.0%)	25.0% (±12.0%)	1.0% (±2.0%)		
True labels Medium	12.0% (±7.0%)	81.0% (±7.0%)	7.0% (±6.0%)		
High	2.0% (±3.0%)	5.0% (±2.0%)	93.0% (±4.0%)		
	Low	Medium Predicted labels	High		

22

Conclusions

- The RMS is almost linear with spray velocity, and it can be used to identify permanent shifts
- PSD showed evidence of being agnostic of pressure and temperature combination used, reducing the experiments required
- Rule-based models are challenging to develop due to the high variability of the features examined.
- An autoencoder can identify the spray segments successfully
- An MLP performed well on diagnostics on the spray velocity. More experimental data is needed.
- Monitoring the cold spray process using AAE is feasible

Thank you e.koufis@tudelf.nl

