

Many-particle impact bonding with quantitative single-particle experiments

Alain Reiser, Christopher Schuh

Laser-induced particle impact testing (LIPIT)

Lee, J.-H., Veysset, D., Singer, J. P., Retsch, M., Saini, G., Pezeril, T., Nelson, K. A., & Thomas, E. L. (2012). *Nature Communications*, 3(1), 1164.

~500 µm

Veysset, D., Sun, Y., Kooi, S. E., Lem, J., and Nelson, K. A., *Int. J. Impact Eng.*, 137, (2020).

Example: from particle rebound to adhesion

Example: from particle rebound to adhesion

LIPIT: fundamentals of cold spray

Hassani-Gangaraj, M. et al. (2018). Acta Materialia, 158, 430–439.

Melting and Erosion

Hassani-Gangaraj, M. et al. (2018). Nature Communications, 9(1), 5077.

300 ns 450 ns Lienhard, J. et al. (2022). Surface and Coatings Technology, 432. Dynamic materials properties and better materials models

Hassani, M., Veysset, D., Nelson, K. A., & Schuh, C. A. **(2020)**. *Scripta Materialia*, *177*, 198–202.

Tiamiyu, A. A., Pang, E. L., Chen, X., LeBeau, J. M., Nelson, K. A., & Schuh, C. A., Nat Mater, 2 (2022).

5

The gap

Multi-particle interactions:

- Bonding
- Pore formation
- Strain hardening
- Dynamic Recrystallisation
- Erosion
- Tamping
- ...

Our goal

Experimental simulation with knowledge of every particle's impact parameters:

- Kinetic energy
- Size

gazillion

Number of particles

2

The gap

Multi-particle interactions:

- Bonding
- Pore formation
- Strain hardening
- Dynamic Recrystallisation
- Erosion
- Tamping
- ...

Our goal

Experimental simulation with knowledge of every particle's impact parameters:

- Kinetic energy
- Size

gazillion

Number of particles

The gap

Multi-particle interactions:

- Bonding
- Pore formation
- Strain hardening
- Dynamic Recrystallisation
- Erosion
- Tamping
- ..

Our goal

Experimental simulation with knowledge of every particle's impact parameters:

- Kinetic energy
- Size

gazillion

Elastic field

Experimental coating simulation: system size?

What is a representative volume?

FEM

Many-particle LIPIT

Number of particles

 \bullet

Many-particle deposition by LIPIT

24 Au particles, 10-20 µm

Full LIPIT accuracy: Quantitative, single-particle data

Full LIPIT accuracy: Quantitative, single-particle data

A typical stack

a

Successful coatings

Hassani-Gangaraj, M., Veysset, D., Nelson, K. A. & Schuh, C. A.. Appl. Surf. Sci. 476, 528–532 (2019).

Eroded coatings

Eroded coatings

Erosion contributes to the coating efficiency at low v

Particle-scale defects

10 µm

How to connect shot number with stack height?

Align stack height with cummulative particle size

Low kinetic energy may contribute

Microstructure evolution: ReX

Correlation of microstructure to kinetic parameters

Correlation of microstructure to kinetic parameters

Correlation of microstructure to kinetic parameters

Many-particle testing as a future avenue for LIPIT

Thank you

Funding:

SNSF Early Postdoc.Mobility P2EZP2 188070

U.S. Department of Energy, DE-SC0018091

A. Reiser, C. Schuh., Towards an understanding of particle-scale flaws and microstructure evolution in cold-spray via accumulation of single particle impacts, arXiv.org, 2404.05601, 2024.