

Contribution to green hydrogen production cost reduction by cold gas spray additive manufacturing

I.G. Cano, V. Albaladejo-Fuentes, T. Andreu, A.Garfias, R. Vaz, J. Sánchez

Nearly 30 years of experience in Thermal Spraying

- Founded in 1994
- 22 researchers in 3 divisions
- The best available thermal spray technologies
- > 400 papers published in Thermal Spray
- 65 PhD thesis presented

- PCS100 Plasma Giken
- CGT KINETICS 4000

00

• DYMET 423

Cold Gas Additive Manufacturing

Cold Gas Additive Manufacturing

Advantages

- High productivity
- Dense final materials
- Great variety of starting materials
- Suitable for large parts
- Multimaterial

Limitations

- Restricted to metals
- Post-treatment
- Control of final geometry
- Properties. Anisotropy

Feed rates

- 150 g/min (CPT)
- 500 g/min (large industrial equipment)

Cold Gas Additive Manufacturing of Titanium

Irregular Ti powder (Ti-I)

- HDH powder
- PSD (10-90 μm)
- High DE
- Low Cost

Spherical Ti powder (Ti-S)

- Gas atomized powder
- PSD (20-63 μm)
- Extremely high DE
- High Cost

AEL

- + \$ 800 1000 /kW
- + Reliability and durability
- + High nominal output
- + Mature technology
- Not compact
- Moderate current densities
- Low flexibility

PEM

- + High flexibility to load changes
- + High H₂ output pressure and purity
- + Compact design
- **-** \$ 1400 1700 /kW
- Requires rare and expensive materials

SOEL

- + Highest efficiency
- + Suitable for co-electrolysis
- \$ 2200 2500 /kW
- Long cold start

N. Gallandat et al. Journal of Power and Energy Engineering, 2017

- Not mature technology

To reduce the cost of the PEM BPP keeping its corrosion resistance and electrical conductivity

IRENA (2020), Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.5°C Climate Goal, International Renewable Energy Agency, Abu Dhabi

Copyright ©HIAT gGmbH

Our system

The solution. I Ti CGS coating of a SS base material

Manufacturing of the PEM BPP by CGS using masks

- Different BPP flow-fields geometries
- Double side BPP for stack integration

Characterization of the deposited Ti flow-field

- Topography
- Structural

Properties relevant to the BPP performance

- Corrosion resistance
- Interfacial contact resistance (ICR)

Bipolar plate performance

CSMA 3D printed patterns

Pins 3D topography and structure

Pins profile

Manufacturing of BPP by CGS using masks

Manufacturing of BPP by CGS using masks

- 1.5 mm SS
- + 200 μ m Ti (each side)
- + 1.5 mm Ti flow field (each side) •

- Polarization curves → three electrode cell
- 0.5 M H₂SO₄ O₂ saturated solution
- -0.1 V 1.8 V vs EOCP

Sample	E _{corr} (mV)	I _{corr} (μΑ)
Ti-l	-614 ± 9	250 ± 14
Ti-S	-665 ± 14	220 ± 10
Ti Bulk	-640 ± 17	15 ± 4

• Resistance to corrosion

Ti Bulk > CSAM Ti due to Intrinsic

defects in the CSAM process

Oxide film stability

ICR experiments setup

- Double-side CGS-Ti on a 9 cm² steel plate vs bulk Ti
- ICR method Adapted from Wang et al.^[2] Compaction force ranging from 25 to 200 N/cm²
- 1 A current

- ICR values decrease with increase in compaction pressure
- ICR Ti Bulk < ICR CSAM Ti

Operating Conditions

- Cell T: 80°C
- Nafion 115 Membrane
- 5 cm² active area
- Anode:
 - 2.0 mg/cm² lr black
 - 90 ml/min
- Cathode:
 - 1.0 mg/cm² Pt/C 60%
 - 0 ml/min

In Collaboration with A. Rocha, R.B. Ferreira, D.S. Falcão, A.M.F.R Pinto CEFT, University of Porto, Portugal.

Cost reduction

- Calculation based on NREL Cost Analysis (2019)
- 5 mm SS + 100 nm Au BPP

Biploar Plate Cost (\$/kW) - 1 MW system

Assumptions

- SS price: \$1.40/kg
- Ti price: \$48/kg
- SS density = 2 x Ti density
- Original BPP: 5 mm Ti + 100 nm Au
- Final BPP: 3.8 mm SS + 2 x 0.6 mm Ti + 100 nm Au
- High production rates (Main cost is material cost)

Cost reduction calculation

- Final BP cost : 19.7. Arbitrary units
- Original BP cost : 50.5. Arbitrary units

61% cost reduction

- Improve surface finishing
- Improve density of flow field Ti
- Nb and Ta coating for ICR improvement
- New flow field geometries
- Scale-up

Looking for suggestions and collaboration!!

TED2021-130461B-I00. INTERFACES CONDUCTORAS PARA REDUCIR EL COSTE DE LOS ELECTROLIZADORES PEM

