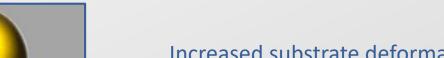
Influence of laser heating on adhesion and coating properties in Laser Assisted Cold Spray

A. Cockburn¹, W. O'Neill², M. Sparkes¹, M. Cole², C. Jones³, J. Randolph^{3,} F Laguines³, D Crawford³

¹ Laser Fusion Technologies Ltd, Cambridge, UK

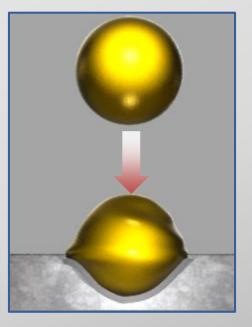
• ² Centre for Industrial Photonics, Department of Engineering, University of Cambridge, UK.

³ ES3 Incorporated, Warner Robins, GA, USA


25/10/2023

Cold substrate

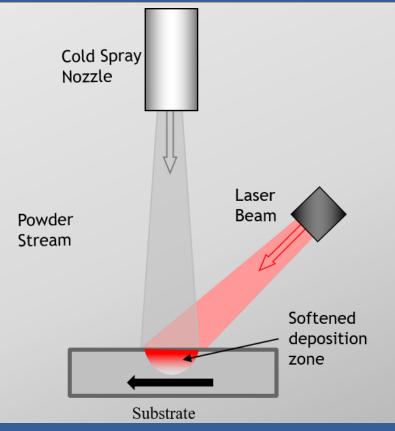
Substrate temperature in cold spray


Increased substrate temperature improves deposition

Increased substrate deformation Increased flash zone Increased extent of bond

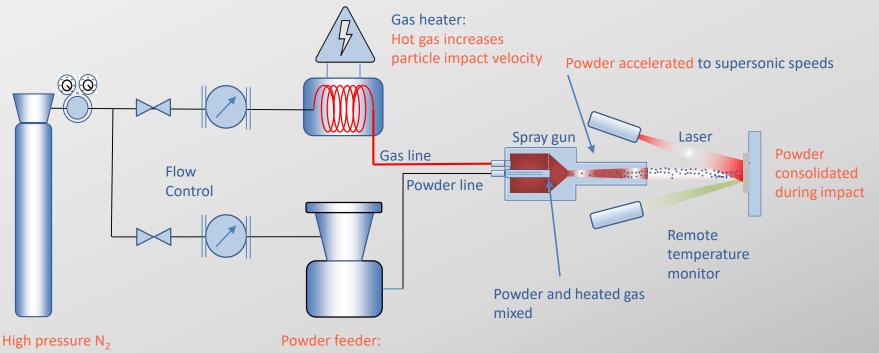
Higher rates Better bonding

Heated substrate

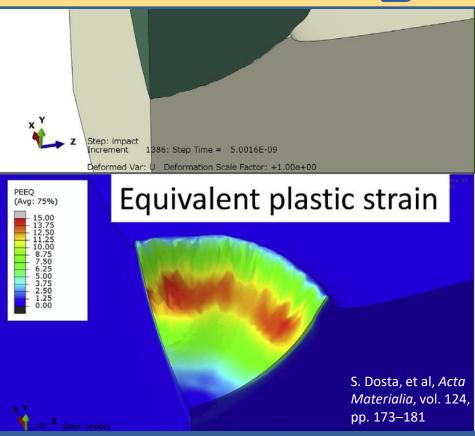


Laser Assisted Cold Spray (LACS)

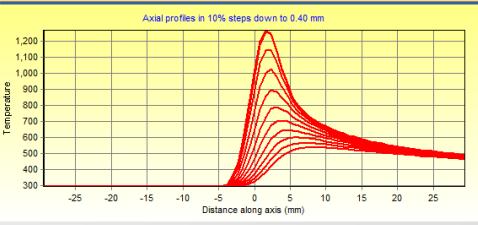
Laser heating softens the deposition site


- Increased deformation and bonding
- Deposition at reduced particle velocity
- Bulk substrate heating avoided
- Better coatings and wider range of materials
- Few materials need helium

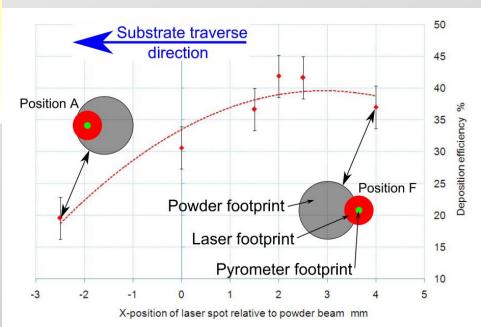
25/10/2023


LACS Deposition System

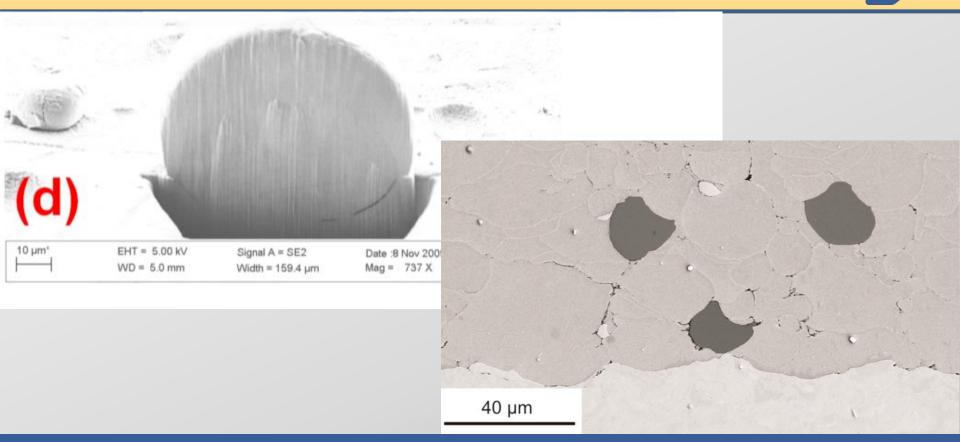
Company Confidential. All materials © Laser Fusion Technologies Limited


How far do we need to heat?

- There are competing requirements from laser heating of the substrate surface
 - Increase temperature in the region of the substrate which deforms during deposition.
 - Avoid overheating substrate to prevent unwanted phase changes and/or overaging.
- Unlike the plastic zone beneath a spherical indenter, the plastic zone beneath a cold sprayed particle is of the order of a few μm beneath the impacting particle.
- In LACS temperature distribution in the top 20-40 µm of the substrate will influence deposition and adhesion.



The influence of laser position

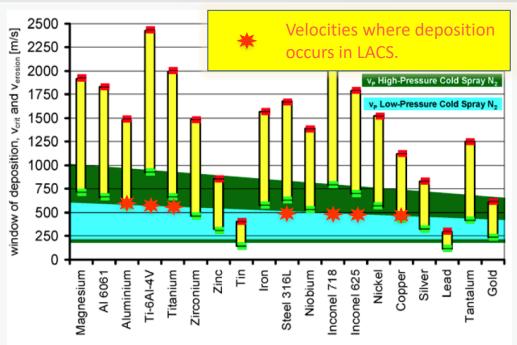


- Peak temperature at a given depth moves back as depth increases.
- The heat input should lead the powder footprint.

Laser spot leading has been shown to increase deposition efficiency.

Influence on particle impact

25/10/2023


Critical Impact Velocities:

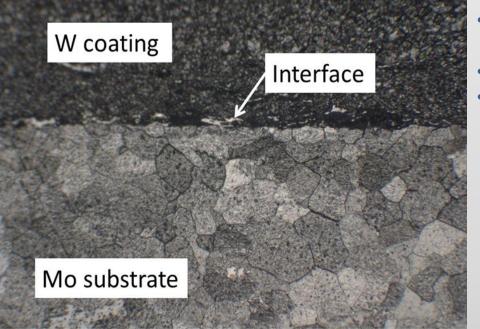
Effect of laser in LACS

- Deposition velocities for various materials are well established for CS.
- With the addition of laser heating, LACS has demonstrated deposition at velocities below the cold spray deposition window for many metals.

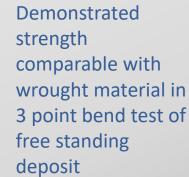
Velocity windows for deposition in CS.

T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye: Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater. 54, 2006, p 729-742.

25/10/2023


25/10/2023

Company Confidential. All materials © Laser Fusion Technologies Limited


200 µm

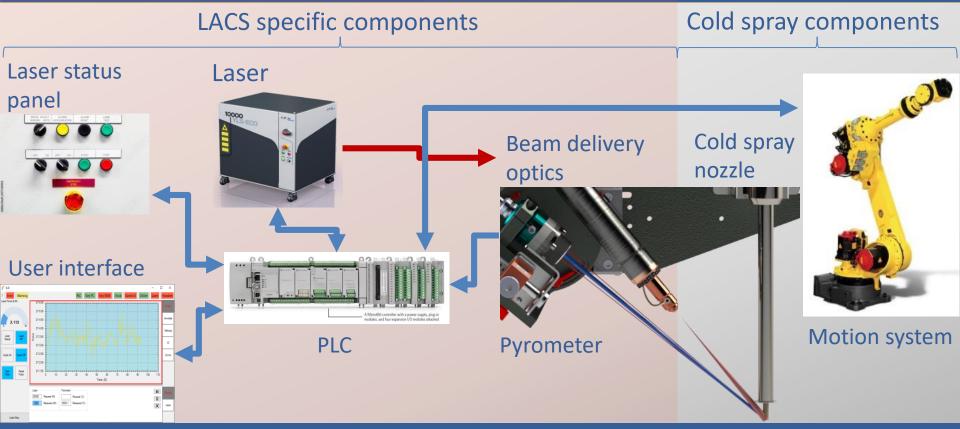
LACS example: Tungsten

Tungsten's high melting point makes Laser cladding difficult. High DBTT inhibits Cold Spray LACS enables coating formation

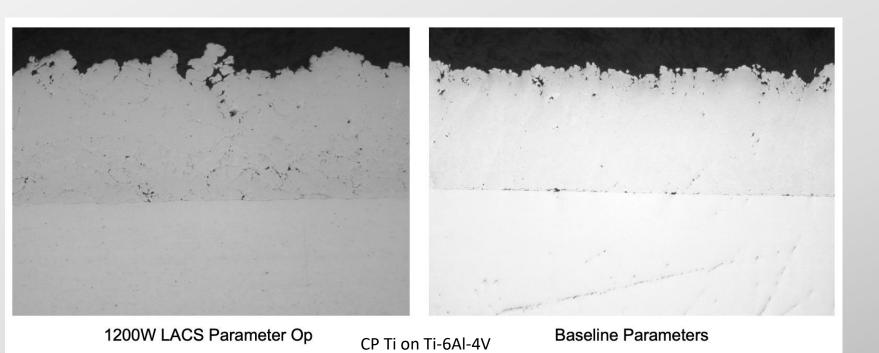
- LACS deposits
 without melting
- Density > 95%

LACS in repair: ES3 GA, USA

- LFT have Upgraded the VRC Gen III at ES3's Georgia Technical Operations Center (GTOC) with a 4 kW IPG laser
- Materials: CP Ti on Ti-6Al-4V, 6061 on 2024-T3, and 6061 on EZ33A-T5.
- Performing testing & comparing Ellsworth AFB baseline parameters to LACS
- Metallurgical (Micro/Hardness/Almen/Bend/Porosity/Ad hesion) –
- Tensile
- Triple Lug Shear
- PATTI Pull Test
- Impact/Drop
- Wear



Company Confidential. All materials © Laser Fusion Technologies Limited

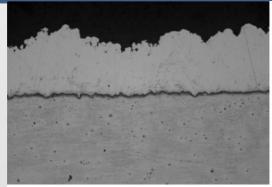

GESE

System provision: Architecture

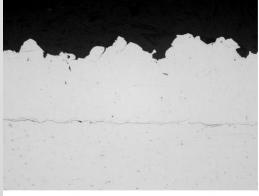
CS Baseline compared to LACS

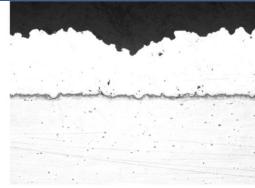
Result summary for Ti on Ti-6Al-4V

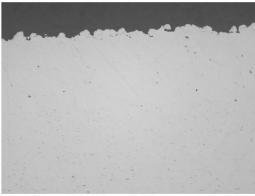
Laser Power	Bend Test	Coating Thickness (in.)	Average Hardness (HV300)	Adhesion Bond Strength (psi)	Porosity
0 W	Fail	0.007	136	3,817	0.50%
2000 W	Pass	0.008	178	3,748	6.9%
1000 W	Pass	0.011	180	5,781	0.78%
1200 W	Pass	0.011	201	11,776	0.46%
1400 W	Fail	0.011	256	5,933	5.7%
1400 W	Fail	0.008	222	9,165	4.0%


No hardness change across substrate detected for Ti-6AI-4V at optimized parameters

25/10/2023

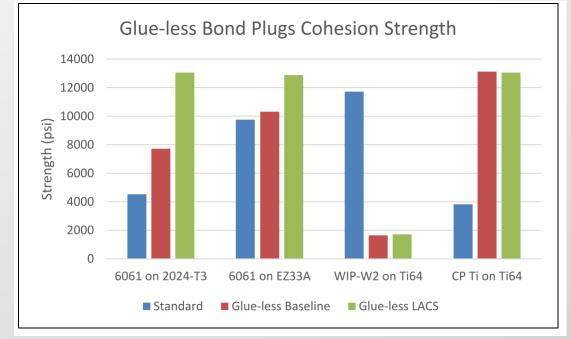

N₂ CS Baseline compared to LACS


- 6061Al on EZ33A-T5 Mg substrates
 - LACS gives 10% greater adhesion values and glue failure rather than cohesive failure.
 - LACS passes the Almen test (Reduced residual stress)
- 6061 Al on 2024-T3 Al
 - 16% increase in adhesion strength
 - Removes obvious bond line in micrographs
 - Reduces porosity to 0.16%
- Substrate hardness is unchanged in both cases.


Baseline 6061 on EZ33A-T5

Baseline 6061 on 2024-T3

LACS 6061 on EZ33A-T5



Laser CS 6061 at 1300W on 2024-T3

25/10/2023

Company Confidential. All materials © Laser Fusion Technologies Limited

Coating Cohesion

Typical Ti Glue-Less Bond Coupon

Post-Test, Glue-Less Bond Coupon: Valimet 6061 on EZ33A

Coating Wear (pin on disc testing)

Project Status

\circ Wear Test

Substrate	Powder	Pin weight loss (g)	CS Weight Loss (g)	LACS Weight loss (g)
	Valimet Grade AM			
EZ33A-T5	6061C	0.026	0.253	0.005
Ti-6Al-4V	WIP-BC1, WIP-W2	0.004	0.045	0.039
	Valimet Grade AM			
2024-T3	6061C	0.0026	0.098	0.004
	Commercially Pure			
Ti-6Al-4V	Titanium	0.004	0.009	0.005

Wear Test Set-up

Typical 2024-T3 Wear Coupon Post-test

Cross-section of Valimet 6061 on 2024-T3 wear coupon

Summary

- Laser heating of the deposition site allows increased deformation on impact.
- Localised deformation during cold spray impact means that heating is only required for the top \sim 40 μm of the substrate.
- LACS enables deposition at impact velocities below v_{crit} for conventional cold spray.
- LACS enables the deposition of refractory coatings such as tungsten.
- LACS can enhance adhesion and cohesion in cold spray coatings.
- LACS is being validated for use as a replacement for helium based cold spray for repair applications on aluminium, titanium and magnesium substrates.

Questions?

25/10/2023