

11 mars 2021

Mise en œuvre de dépôts « cold spray » à partir de poudres base nickel pour le chaînage avec la fusion laser Etude des effets mécaniques et thermiques sur les microstructures

Cléa Plouze,

Directeur de thèse : Vincent GUIPONT, Collaboration : Antoine DEBRAY, Georg MAUER, Lyliat FERHAT, Djamel MISSOUM-BENZIANE

Fabrication additive à partir de poudres

Laser Beam Melting (LBM)

Cold Spray (CS)

PSL 🖈

MINES ParisTech

Dépôts Cold Spray base Ni

- Adhésion des particules de poudres :
 - Cisaillement adiabatique à l'interface
 - Vitesses supersoniques \rightarrow Vitesse critique
 - Vitesse de déformation: 10⁶-10⁹ s⁻¹
 - Écrouissage, Recristallisation
- Construction en deux phases
 - Adhésion/Déformation particule/substrat
 - Adhésion/Déformation particule/particule
- Origine des contraintes résiduelles
 - Mécanique :
 - Déformation plastique à l'impact
 - Grenaillages successifs
 - Thermique
 - Échauffement/refroidissement local et global
 - Différences de dilatation thermique
- Base Ni (IN718, IN625, IN738LC, Ni)
 - Alliage de fonderie \rightarrow peu ductile \rightarrow vitesse critique élevée
 - Optimisation du procédé et des poudres
 - Applications Réparation et FA

[1] Assadi et al., Acta Mater. (2003)
[2] Kim et al., Scr. Mater. (2008)
[3] Vassen et al., J. Therm. Spray Tech; (2020)
[4] Ogawa et Seo, Advances in Gas Turbine Technology, (2011)

PSI 🕷

Fabrication additive LBM base Ni

- Procédé de fusion-solidification de poudres
 - Fusion et solidification rapide :
 - $V_r = 10^5 \text{ K/s}$
- Problématique des contraintes résiduelles
 - Origine thermique
 - Gradients thermiques
 - Solidification/Trempe
 - Déformation des pièces
 - Haut de la pièce : Traction
 - Bas de la pièce : Compression

- Matériau réputé « Fissurant »
 - Problématique IN738LC
 - [Royer, 2014]

[2]

- [Grange, 2020]
- Origines :

(a)

Cubic

sample

001

111

Fissuration à la solidification

2um

(b)

• Fissuration par liquation

Cas d'étude pour l'illustration du Chaînage Cold Spray→LBM

- → Plateaux de fabrication LBM revêtu par Cold Spray
- → Cas de poudres métalliques de composition identique CS et LBM
- → Prévenir fissuration à l'interface plateau/pièce

Preuve de concept sur matériaux innovants: plateaux revêtus CS base Ni pour LBM base Ni

Déroulement de l'étude / Plan de l'exposé

Déroulement de l'étude / Plan de l'exposé

Analyse des poudres

MINES ParisTech★ | PSL★

O Poudre Inconel 738LC – Praxair

O Poudre Ni – Praxair – (pureté : 99%massique)

	Ni	Cr	Со	Ti	AI	W	Та	Мо	Nb	С	Fe	Zr
%m	-	16,1	8,91	3,43	3,41	2,62	1,77	1,75	0,85	0,10	0,08	0,06

	Poudre IN738LC	Poudre Ni
Granulométrie (% vol.)	D10 _{vol} = 23 μm D50 _{vol} = 33 μm D90 _{vol} = 47 μm	D10 _{vol} = 22 μm D50 _{vol} = 35 μm D90 _{vol} = 55 μm

- Poudre sphérique, satellites
- Microstructure dendritique
- Absence de précipités γ' observables
- Bonne coulabilité
- Dureté :
 - IN738LC : $409 \pm 17 \text{ HV}_{0,01}$
 - Ni pur : $141 \pm 13 \text{ HV}_{0,01}$

Attaque Kalling2 (5g CuCl₂, 100 mL HCl, 100 mL C₂H₅OH)

Déroulement de l'étude / Plan de l'exposé

Mise en œuvre des projections CS

Installation	CDM			IEK Jülich	
Poudre	IN738LC		Ni	IN738LC	
Gaz porteur	Azote	Hélium	Azote	Azote	
P (MPa)	3,0	2,5	3,0	5,0	
T (°C)	600	500	500	1100	
D _{proj} (mm)	20			60	
D _{poudre} (g/min)	30			30	
V _{éclairement} (mm/s)	200			500	
Pas (mm)	1			1	

- Augmentation de l'épaisseur
 - V_{particules} 7
 - Gaz porteur He
 - Collaboration Jülich
 - Limiter le délaminage
 - 7 Rugosité
 - Préchauffage substrat
 - 7 ductilité
 - Ni
- Bouchage de buse
 - Buse SiC
 - Reproductibilité ?

	Inox AISI 304	2017A
Dureté (Hv _{0,025})	220 ± 20	113 ± 5
Rugosité min. Sablage corrindon (300 µm – 700 µm)	4 µm	5 µm
		/

PSL 🖈

Microstructure des dépôts CS

Porosités (5 % \pm 3)

Dépôt IN738LC – AISI304 CdM - He

Porosité (3 à 5 %)

Porosité $(3\% \pm 1)$

Dépôt Ni – 2017A CdM – Azote

Porosité (2 %)

Porosité $(1,7 \% \pm 0,4)$

- Dépôt IN738LC CdM
 - Dépôt fins
 - Porosité
 - Fissures
- Dépôt IN738LC Jülich
 - Dépôt épais
 - Peu de pores / fissures orientées
- Dépôt Ni CdM ٠
 - Dépôt épais
 - Porosités
 - peu de fissures

Microstructure des dépôts CS

O Déformation des particules

in the second se

Dépôt IN738LC – 2017A CdM - He

Dépôt IN738LC – 2017A Jülich – Azote

Microstructure

- Déformations importantes des particules
- Liaison interparticulaire importantes ech. Jülich >> Particules disjointes ech. CdM

Analyse des dépôts Cold Spray

Rugosité et micro-dureté

Rugosité

Ο

- Poudre LBM
- Ep 7 → Ra 7
- Dépôts Jülich plus homogène
- Dureté
 - Ecrouissage Hv_{poudre} << Hv_{dépôts}
 - Différence faible entre dépôts
 - $Hv_{IN738LC} > Hv_{Ni}$

16 2017A 14 12 2017A 10 Ra (µm) 8 2017A 6 2017A 4 2 0 Dépôt IN738LC Dépôt IN738LC Dépôt IN738LC Substrats CDM N2 CDM He Jülich

Rugosité

Evaluation des contraintes résiduelles - DRX

- Bruker D8 DISCOVER
 - Montage Ω
 - Source RX Co-Kα
- Plan (h,k,l) (311), 20=111.05
- Propriétés élastiques base Ni:
 - E = 200GPa
 - v = 0,3
 - Coef. anisotropie: A_{RX} = 1,52

PSL 🖈

Courbes en sin²(Ψ) calcul des contraintes résiduelles

Mesures de surface

Filiation avec enlèvement de matière

Evaluation des contraintes résiduelles - DRX

O Effet du substrat – effet des paramètres de projection

Influence du traitement thermique

PSL 🖈

MINES ParisTech

Déroulement de l'étude / Plan de l'exposé

LBM – Cordons 1D

0E0

Al Ka EDS 15 kV 20 nA

Microsonde de castaing (ex : Al)

- O Choix des paramètres laser
- Passage 1D \rightarrow 2D :
 - − Choix des paramètres laser → mesures cordons H_{app} et e_{app}
 - $E_{vecteur} = (1 \tau_{recouvrement}) * e_{app}$
- Zone refondue ~ 40 200 μm
- A terme : adaptation de l'épaisseur de dépôt CS

O Méthodologie

0,1 J/mm, $Z_r = \frac{E_p}{5}$ IN738LC - 2017A CdM - Helium

Vue de dessus

Coupe générale

> Coupe détaillée Attaque chimique

5 mm

0,4 J/mm,
$$Z_r = \frac{E_p}{3}$$

IN738LC – 2017A
Jülich - Azote

0,2 J/mm $Z_r \sim E_p$ IN738LC - 2017A CdM - Azote

- Paramètres laser : ٠
 - 600 mm/s ; 120 W ; 0,2 J/mm
 - 800 mm/s ; 320 W ; 0,4 J/mm
- Délaminage •
 - Sources:
 - Manque d'adhérence •
 - Contraintes LBM
- Porosités ۲
- Fissuration en surface du drap ۲

0,2 J/mm $Z_r \sim E_p$

IN738LC - AISI304 ; CdM - Azote

O Coupe draps

0,4 J/mm, $Z_r = \frac{E_p}{3}$ IN738LC – AISI304 CdM – Azote – Août 2020

200 µm

100 µm 100 µm Délaminage Porosité Fissuration bord de drap **Fissuration** - Maximum de contraintes 0,4 J/mm $Z_r \ll E_p$ Ni – 2017A; CdM - Azote 0,4 J/mm, $Z_r = \frac{E_p}{3}$; IN738LC – AISI304 Jülich - Azote 7 des contraintes \rightarrow jonction des fissures Détachement du dépôt

Fissuration interne

500 μm

LBM

O Bilan

- Phénomènes thermiques de fusion :
 - Contraction de la zone fondue \rightarrow Fissuration en bord de draps
 - Caractéristiques du dépôt :
 - − Porosités et fissurations \rightarrow propagation des fissures
 - Dépôt dense → Fissuration pour les fortes énergies
 - Dépôt Ni → porositées, moins de fissuration
- Prochaines étapes :
 - Réception de plateaux revêtus CS
 - − Fabrication de cubes LBM \rightarrow chargement plus important

Conclusion générale – perspectives

11 mars 2021

Merci ! Des questions ?

